Practice With Solutions

back to index  |  new

Let $ABCD$ be a trapezoid. Points $M$ and $N$ are the mid points of its diagonal $AC$ and $BD$, respectively. Show that $MN \parallel AB$ and $MN = \frac{1}{2}\mid AB - CD\mid$.


A plane passing through the vertex $A$ and the center of its inscribed sphere of a tetrahedron $ABCD$ intersects its edge $BC$ and $CD$ at point $E$ and $F$, as shown. If $AEF$ divides this tetrahedron into two equal volume parts: $A-BDEF$ and $A-CEF$, what is the relationship between these two parts' surface areas $S_1$ and $S_2$ where $S_1 = S_{A-BDEF}$ and $S_1=S_{A-CEF}$? $(A) S_1 < S_2\quad(B) S_1 > S_2\quad (C) S_1 = S_2 \quad(D) $ cannot determine


Prove that there is one and only one triangle whose side lengths are consecutive integers, and one of whose angles is twice as large as another.

As shown, $E, F, G, H$ are midpoints of the four sides. If $AB\parallel A'B', BC\parallel B'C',$ and $CD\parallel C'D'$, show that $AD\parallel A'D'$.


As shown, two vertices of a square are on the circle and one side is tangent to the circle. If the side length of the square is 8, find the radius of the circle.


Compute the least possible area of a non-degenerate right triangle with sides of lengths $\sin{x}$, $\cos{x}$ and $\tan{x}$ where $x$ is a real number.


Let $P(x)$ be the polynomial $x^3 + Ax^2 +Bx+C$ for some constants $A, B,$ and $C$. There exists constant $D$ and $E$ such that for all $x$, $P(x+1)=x^3 + Dx^2 + 54x +37$ and $P(x+2)=x^3 + 26x + Ex+115$. Compute the ordered triple $(A, B, C)$.

Find the largest of three prime divisors of $13^4+16^5-172^2$.


In $\triangle{ABC}$, $\angle{BAC} = 40^\circ$ and $\angle{ABC} = 60^\circ$. Points $D$ and $E$ are on sides $AC$ and $AB$, respectively, such that $\angle{DBC}=40^\circ$ and $\angle{ECB}=70^\circ$. Let $F$ be the intersection point of $BD$ and $CE$. Show that $AF\perp BC$.


$DEB$ is a chord of a circle such that $DE=3$ and $EB=5 .$ Let $O$ be the center of the circle. Join $OE$ and extend $OE$ to cut the circle at $C.$ Given $EC=1,$ find the radius of the circle


Chords $AB$ and $CD$ of a given circle are perpendicular to each other and intersect at a right angle at point $E$. If $BE=16$, $DE=4$, and $AD=5$, find $CE$.

Let $x, y,$ and $z$ be some real numbers such that: $x+2y-z=6$ and $x-y+2z=3$. Find the minimal value of $x^2 + y^2 + z^2$.

Let $x$ be a negative real number. Find the maximum value of $y=x+\frac{4}{x} +2007$.

Let real numbers $a$ and $b$ satisfy $a^2 + ab + b^2 = 1$. Find the range of $a^2 - ab + b^2$.

Prove the Maximum Area of a Triangle with Fixed Perimeter is Equilateral

Use the Arithmetic Mean-Geometric Mean Inequality to find the maximum volume of a box made from a 25 by 25 square sheet of cardboard by removing a small square from each corner and folding up the sides to form a lidless box.

In $\triangle{ABC}$ show that $$\tan nA + \tan nB + \tan nC = \tan nA \tan nB \tan nC$$ where $n$ is an integer.

In $\triangle{ABC}$, if $A:B:C=4:2:1$, prove $$\frac{1}{a}+\frac{1}{b}=\frac{1}{c}$$

Let $O$ be a point inside a convex pentagon, as shown, such that $\angle{1} = \angle{2}, \angle{3} = \angle{4}, \angle{5} = \angle{6},$ and $\angle{7} = \angle{8}$. Show that either $\angle{9} = \angle{10}$ or $\angle{9} + \angle{10} = 180^\circ$ holds.


In $\triangle{ABC}$, $AB = 33, AC=21,$ and $BC=m$ where $m$ is an integer. There exist points $D$ and $E$ on $AB$ and $AC$, respectively, such that $AD=DE=EC=n$ where $n$ is also an integer. Find all the possible values of $m$.


Let quadrilateral $ABCD$ inscribe a circle. If $BE=ED$, prove $$AB^2+BC^2 +CD^2 + DA^2 = 2AC^2$$


Let $H$ be the orthocenter of acute $\triangle{ABC}$. Show that $$a\cdot BH\cdot CH + b\cdot CH\cdot AH+c\cdot AH\cdot BH=abc$$ where $a=BC, b=CA,$ and $c=AB$.

In $\triangle{ABC}$, $AE$ and $AF$ trisects $\angle{A}$, $BF$ and $BD$ trisects $\angle{B}$, $CD$ and $CE$ trisects $\angle{C}$. Show that $\triangle{DEF}$ is equilateral.


As shown, $\angle{ACB} = 90^\circ$, $AD=DB$, $DE=DC$, $EM\perp AB$, and $EN\perp CD$. Prove $$MN\cdot AB = AC\cdot CB$$


As shown, in $\triangle{ABC}$, $AB=AC$, $\angle{A} = 20^\circ$, $\angle{ABE} = 30^\circ$, and $\angle{ACD}=20^\circ$. Find the measurement of $\angle{CDE}$.