Function ARML Intermediate
2016


Problem - 3117
Let $P(x)$ be the polynomial $x^3 + Ax^2 +Bx+C$ for some constants $A, B,$ and $C$. There exists constant $D$ and $E$ such that for all $x$, $P(x+1)=x^3 + Dx^2 + 54x +37$ and $P(x+2)=x^3 + 26x + Ex+115$. Compute the ordered triple $(A, B, C)$.

The solution for this problem is available for $0.99. You can also purchase a pass for all available solutions for $99.

report an error