Let $P(x)$ be a nonzero polynomial such that $(x-1)P(x+1)=(x+2)P(x)$ for every real $x$, and $(P(2))^2 = P(3)$. Then $P\big(\frac72\big)=\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
Find the least positive integer $m$ such that $m^2 - m + 11$ is a product of at least four not necessarily distinct primes.
Freddy the frog is jumping around the coordinate plane searching for a river, which lies on the horizontal line $y = 24$. A fence is located at the horizontal line $y = 0$. On each jump Freddy randomly chooses a direction parallel to one of the coordinate axes and moves one unit in that direction. When he is at a point where $y=0$, with equal likelihoods he chooses one of three directions where he either jumps parallel to the fence or jumps away from the fence, but he never chooses the direction that would have him cross over the fence to where $y < 0$. Freddy starts his search at the point $(0, 21)$ and will stop once he reaches a point on the river. Find the expected number of jumps it will take Freddy to reach the river.
Circles $\omega_1$ and $\omega_2$ intersect at points $X$ and $Y$. Line $\ell$ is tangent to $\omega_1$ and $\omega_2$ at $A$ and $B$, respectively, with line $AB$ closer to point $X$ than to $Y$. Circle $\omega$ passes through $A$ and $B$ intersecting $\omega_1$ again at $D \neq A$ and intersecting $\omega_2$ again at $C \neq B$. The three points $C$, $Y$, $D$ are collinear, $XC = 67$, $XY = 47$, and $XD = 37$. Find $AB^2$.
Let $ABC$ be a right triangle where $AB=4, BC=3$ and $AC=5$. Draw square $ACEF$ and $BCDG$ as shown. Find the area of $\triangle{CDE}$.
Let $ABCD$ be a convex quadrilateral and the two diagonals intersect at point $O$. If $AC = 12, BD=5$ and $\angle{AOB}=2\angle{BOC}$, find the area of $S_{ABCD}$
In $\triangle{ABC}$, if $(b+c):(c+a):(a+b)=5:6:7$, compute $\sin{A}:\sin{B}:\sin{C}$.
In $\triangle{ABC}$, if $\sin{A}:\sin{B}:\sin{C}=4:5:7$, compute $\cos{C}$ and $\sin{C}$.
In $\triangle{ABC}$, if $(a+b+c)(a+b-c)=3ab$, compute $\angle{C}$.
A regular pentagon is inscribed in a unit circle. Find the perimeter of this pentagon.
In $\triangle{ABC}$, if $(a^2 +b^2)\sin(A-B)=(a^2-b^2)\sin(A+B)$, determine the shape of $\triangle{ABC}$.
Let $\triangle{ABC}$ be an acute triangle and $a, b, c$ be the three sides opposite to $\angle{A}, \angle{B}, \angle{C}$ respectively. If vectors $m=(a+c,b)$ and $n=(a-c, b-a)$ satisfy $m\cdot n = 0$,
(1) Compute the measurement of $\angle{C}$.
(2) Find the range of $\sin{A} + \sin{B}$.
In $\triangle{ABC}$, if $a\cos{C} + \frac{c}{2} = b$, (1) compute $\angle{A}$. (2) if $a=1$, find the range of the perimeter o f $\triangle{ABC}$.
Let $BD$ be a median in $\triangle{ABC}$. If $AB=\frac{4\sqrt{6}}{3}$, $\cos{B}=\dfrac{\sqrt{6}}{6}$, and $BD=\sqrt{5}$, find the length of $BC$ and the value of $\sin{A}$.
Let $ABCD$ be inscribed in a circle. If $AB=a, BC=b, CD=c,$ and $DA=d$, show that $$\cos{B} = \frac{a^2 + b^2 -c^2 - d^2}{2(ab+cd)}$$
There are four points on a plane as shown. Points $A$ and $B$ are fixed points satisfying $AB=\sqrt{3}$. Points $P$ and $Q$ can move, as long as $AP=PQ=QB=1$. Let $S$ and $T$ be the area of $\triangle{APB}$ and $\triangle{PQB}$, respectively. Find the maximum value of $S^2+T^2$.
Let $R=2$ be the circumradius of $\triangle{ABC}$. Compute the value of $$\frac{a+b+c}{\sin{A}+\sin{B}+\sin{C}}$$
Let $R=\frac{7\sqrt{3}}{3}$ be the circumradius of $\triangle{ABC}$. If $\angle{B} = 60^\circ$ and its area $S_{\triangle{ABC}}=10\sqrt{3}$, find the lengths of $a$, $b$, and $c$.
In isosceles right triangle $\triangle{ABC}$, $\angle{C}$ is the right angle. Points $D$ and $E$ are on side $AB$ such that $\angle{DCE}=45^\circ$, $AD=25$, and $EB=16$. Let the length of $DE$ be $x$. Find $x^2$.
Let $ABCD$ be a square. Points $E$ and $F$ are on its sides $BC$ and $CD$ such that $\angle{EAF}=45^\circ$. If point $G$ is on $EF$ such that $AG\perp EF$, show $AG=AD$.
Let $D$ be a point inside an isosceles triangle $\triangle{ABC}$ where $AB=AC$. If $\angle{ADB} > \angle{ADC}$, prove $DC > DB$.
Let $ABCD$ be a square with side length of 1. Find the total area of the shaded parts in the diagram.
Initially Alex, Betty, and Charlie had a total of $444$ peanuts. Charlie had the most peanuts, and Alex had the least. The three numbers of peanuts that each person had formed a geometric progression. Alex eats $5$ of his peanuts, Betty eats $9$ of her peanuts, and Charlie eats $25$ of his peanuts. Now the three numbers of peanuts each person has forms an arithmetic progression. Find the number of peanuts Alex had initially.
There is a $40\%$ chance of rain on Saturday and a $30\%$ chance of rain on Sunday. However, it is twice as likely to rain on Sunday if it rains on Saturday than if it does not rain on Saturday. The probability that it rains at least one day this weekend is $\frac{a}{b}$, where $a$ and $b$ are relatively prime positive integers. Find $a+b$.
Let $x,y,$ and $z$ be real numbers satisfying the system $\log_2(xyz-3+\log_5 x)=5$ $\log_3(xyz-3+\log_5 y)=4$ $\log_4(xyz-3+\log_5 z)=4$ Find the value of $|\log_5 x|+|\log_5 y|+|\log_5 z|$.