A total of $2018$ tickets, numbered $1$, $2$, $3$, $\cdots$, $2014$, $2015$ are placed in an empty bag. Alfrid removes ticket $a$ from the bag. Bernice then removes ticket $b$ from the bag. Finally, Charlie removes ticket $c$ from the bag. They notice that $a < b < c$ and $a + b + c = 2018$. In how many ways could this happen?
Show that $$\binom{n}{k} = \frac{n}{k}\binom{n-1}{k-1}$$
Let positive integers $m\le k \le n$. Show that $$\binom{n}{k}\binom{k}{m} =\binom{n}{m}\binom{n-m}{k-m} =\binom{n}{k-m}\binom{n-k+m}{m}$$
Show that $$\binom{n}{0}+\frac{1}{2}\binom{n}{1}+\frac{1}{3}\binom{n}{2}+\cdots+\frac{1}{n+1}\binom{n}{n}=\frac{2^{n+1}-1}{n+1}$$
Using at least two approaches to prove $$\binom{n}{1} + 2\binom{n}{2} + 3\binom{n}{3} + \cdots +n\binom{n}{n} = n\cdot 2^{n-1}$$
Compute the value of $$\displaystyle\sum_{k=1}^n k^2\binom{n}{k}$$
Simplify: $1\times 2 + 2\times 3 + 3\times 4 + \cdots + 2015 \times 2016$
Find the remainder when $1\times 2 + 2\times 3 + 3\times 4 + \cdots + 2018\times 2019$ is divided by $2020$.
Let $X$ be the integer part of $\left(3+\sqrt{7}\right)^n$ where $n$ is a positive integer. Show that $X$ must be odd.
Let $n$ be a positive integer. Show that the smallest integer that is larger than $(1+\sqrt{3})^{2n}$ is divisible by $2^{n+1}$.
Let $m=4k+1$ where $k$ is a non-negative integer. Show that $$a=\binom{n}{1}+m\binom{n}{3}+m^2\binom{n}{5}+\cdots+m^{\frac{n-1}{2}}\binom{n}{n}$$
is divisible by $2^{n-1}$, where $n$ is an odd number.
Show that the following inequality holds for any positive integer $n$: $$(2n+1)^n \ge (2n)^n + (2n-1)^n$$
Let $a$ and $b$ be two positive real numbers. Show that if $\frac{1}{a}+\frac{1}{b}=1$. Prove that the following inequality holds for any positive integer $n$: $$(a+b)^n-a^n-b^n\ge 2^{2n}-2^{n+1}$$
Let $\{a_n\}$ be a sequence defined as $a_n=\lfloor{n\sqrt{2}}\rfloor$ where $\lfloor{x}\rfloor$ indicates the largest integer not exceeding $x$. Show that this sequence has infinitely many square numbers.
Let sequence $g(n)$ satisfy $g(1)=0, g(2)=1, g(n+2)=g(n+1)+g(n)+1$ where $n\ge 1$. Show that if $n$ is a prime greater than 5, then $n\mid g(n)[g(n)+1]$.
Let the integer and decimal part of $(5\sqrt{2}+7)^{2n+1}$ be $I$ and $D$ respectively. Show that $(I+D)D$ is a constant.
Let $n$ be a non-negative integer. Show that $2^{n+1}$ divides the value of $\left\lfloor{(1+\sqrt{3})^{2n+1}}\right\rfloor$ where function $\lfloor{x}\rfloor$ returns the largest integer not exceeding the give real number $x$.
Let $a$, $b$ be two positive real numbers, and $n$ be a positive integer greater than $2$. Show that $$\frac{a^n+a^{n-1}b+\cdots+ab^{-1}+b^n}{n+1}\ge \Big(\frac{a+b}{2}\Big)^n$$
Show that all the terms of the sequence $a_n=\frac{(2+\sqrt{3})^n-(2-\sqrt{3})^n}{2\sqrt{3}}$ are integers, and also find all the $n$ such that $3 \mid a_n$.
Show that all terms of the sequence $a_n=\left(\frac{3+\sqrt{5}}{2}\right)^n+\left(\frac{3-\sqrt{5}}{2}\right)^n -2$ are integers. And when $n$ is even, $a_n$ can be expressed as $5m^2$, when $n$ is odd $a_n$ can be expressed as $m^2$.
If the $5^{th}$, $6^{th}$ and $7^{th}$ coefficients in the expansion of $(x^{-\frac{4}{3}}+x)^n$ form an arithmetic sequence, find the constant term in the expanded form.
In Pascal's Triangle, each entry is the sum of the two entries above it. In which row of Pascal's Triangle do three consecutive entries occur that are in the ratio $3: 4: 5$?
A triangular array of squares has one square in the first row, two in the second, and in general, $k$ squares in the $k$th row for $1 \leq k \leq 11.$ With the exception of the bottom row, each square rests on two squares in the row immediately below (illustrated in given diagram). In each square of the eleventh row, a $0$ or a $1$ is placed. Numbers are then placed into the other squares, with the entry for each square being the sum of the entries in the two squares below it. For how many initial distributions of $0$'s and $1$'s in the bottom row is the number in the top square a multiple of $3$?
Label the first row of the Pascal triangle as row $0$. How many odd numbers are there in the $2019^{th}$ row?
If the sum of all coefficients in the expanded form of $(3x+1)^n$ is $256$, find the coefficient of $x^2$.