Is $4^{545} + 545^{4}$ a prime?
Prove that if $n>1$, then $(n^4 + 4^n)$ is a composite number.
Compute $$\frac{(10^4+324)(22^4+324)(34^4+324)(46^4+324)(58^4+324)}{(4^4+324)(16^4+324)(28^4+324)(40^4+324)(52^4+324)}$$
Calculate the value of $$\dfrac{2014^4+4 \times 2013^4}{2013^2+4027^2}-\dfrac{2012^4+4 \times 2013^4}{2013^2+4025^2}$$
Find the value of $(2 + \sqrt{5})^{1/3} - (-2 + \sqrt{5})^{1/3}$.
Note that $1 + 2 + 3 + 45 + 6 + 78+9=144$. How many different ways are there to make a total of $144$ using only digits of $1$, $2$, $3$, $4$, $\cdots$, $7$, $8$, $9$, in that order, with some addition signs.
For some particular value of $N$, when $(a+b+c+d+1)^N$ is expanded and like terms are combined, the resulting expression contains exactly $1001$ terms that include all four variables $a, b,c,$ and $d$, each to some positive power. What is $N$?
Find a square number which has two thousand and eighteen $6$s and some numbers of $0$s?
Given $\triangle{ABC}$, let $m_a, m_b,$ and $m_c$ be the lengths of three medians. Find its area $S_{\triangle{ABC}}$ with respect to $m_a, m_b,$ and $m_c$.
There exist some integers, $a$, such that the equation $(a+1)x^2 -(a^2+1)x+2a^2-6=0$ is solvable in integers. Find the sum of all such $a$.
Let $f(x)=x^{-\frac{k^2}{2}+\frac{3}{2}k+1}$ be an odd function where $k$ is an integer. If $f(x)$ is monotonically increasing when $x\in(0,+\infty)$, find all the possible values of $k$.
Let $G$ be the centroid of $\triangle{ABC}$. Points $M$ and $N$ are on side $AB$ and $AC$, respectively such that $\overline{AM} = m\cdot\overline{AB}$ and $\overline{AN} = n\cdot\overline{AC}$ where $m$ and $n$ are two positive real numbers. Find the minimal value of $mn$.
Two dice appear to be normal dice with their faces numbered from $1$ to $6$, but each die is weighted so that the probability of rolling the number $k$ is directly proportional to $k$. The probability of rolling a $7$ with this pair of dice is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
For a permutation $p = (a_1,a_2,\ldots,a_9)$ of the digits $1,2,\ldots,9$, let $s(p)$ denote the sum of the three $3$-digit numbers $a_1a_2a_3$, $a_4a_5a_6$, and $a_7a_8a_9$. Let $m$ be the minimum value of $s(p)$ subject to the condition that the units digit of $s(p)$ is $0$. Let $n$ denote the number of permutations $p$ with $s(p) = m$. Find $|m - n|$.
The sum of the three different positive unit fractions is $\frac{6}{7}$. What is the least number that could be the sum of the denominators of these fractions?
In $\triangle{ABC}$, if $(a^2 +b^2)\sin(A-B)=(a^2-b^2)\sin(A+B)$, determine the shape of $\triangle{ABC}$.
Let $\triangle{ABC}$ be an acute triangle and $a, b, c$ be the three sides opposite to $\angle{A}, \angle{B}, \angle{C}$ respectively. If vectors $m=(a+c,b)$ and $n=(a-c, b-a)$ satisfy $m\cdot n = 0$,
(1) Compute the measurement of $\angle{C}$.
(2) Find the range of $\sin{A} + \sin{B}$.
In $\triangle{ABC}$, if $a\cos{C} + \frac{c}{2} = b$, (1) compute $\angle{A}$. (2) if $a=1$, find the range of the perimeter o f $\triangle{ABC}$.
Let $BD$ be a median in $\triangle{ABC}$. If $AB=\frac{4\sqrt{6}}{3}$, $\cos{B}=\dfrac{\sqrt{6}}{6}$, and $BD=\sqrt{5}$, find the length of $BC$ and the value of $\sin{A}$.
Let $ABCD$ be inscribed in a circle. If $AB=a, BC=b, CD=c,$ and $DA=d$, show that $$\cos{B} = \frac{a^2 + b^2 -c^2 - d^2}{2(ab+cd)}$$
There are four points on a plane as shown. Points $A$ and $B$ are fixed points satisfying $AB=\sqrt{3}$. Points $P$ and $Q$ can move, as long as $AP=PQ=QB=1$. Let $S$ and $T$ be the area of $\triangle{APB}$ and $\triangle{PQB}$, respectively. Find the maximum value of $S^2+T^2$.
Let $R=\frac{7\sqrt{3}}{3}$ be the circumradius of $\triangle{ABC}$. If $\angle{B} = 60^\circ$ and its area $S_{\triangle{ABC}}=10\sqrt{3}$, find the lengths of $a$, $b$, and $c$.
For polynomial $P(x)=1-\dfrac{1}{3}x+\dfrac{1}{6}x^{2}$, define $Q(x)=P(x)P(x^{3})P(x^{5})P(x^{7})P(x^{9})=\displaystyle\sum_{i=0}^{50} a_ix^{i}$. Find the value of $\displaystyle\sum_{i=0}^{50} |a_i|$.
Find the number of sets $\{a,b,c\}$ of three distinct positive integers with the property that the product of $a,b,$ and $c$ is equal to the product of $11,21,31,41,51,61$.
In $\triangle{ABC}$, let $AB=c$, $AC=b$, and $\angle{BAC}=\alpha$. If $AD$ bisects $\angle{BAC}$ and intersects $BC$ at $D$, find the length of $AD$.