FunctionProperty
希望杯
Intermediate
2014
Let $f(x)=x^{-\frac{k^2}{2}+\frac{3}{2}k+1}$ be an odd function where $k$ is an integer. If $f(x)$ is monotonically increasing when $x\in(0,+\infty)$, find all the possible values of $k$.
The solution for this problem is available for
$0.99.
You can also purchase a pass for all available solutions for
$99.