Practice (68)

back to index  |  new

393
At Rachelle's school an $A$ counts 4 points, a $B$ 3 points, a $C$ 2 points, and a $D$ 1 point. Her GPA on the four classes she is taking is computed as the total sum of points divided by 4. She is certain that she will get $A$s in both Mathematics and Science, and at least a $C$ in each of English and History. She thinks she has a $\tfrac{1}{6}$ chance of getting an $A$ in English, and a $\tfrac{1}{4}$ chance of getting a $B$. In History, she has a $\tfrac{1}{4}$ chance of getting an $A$, and a $\tfrac{1}{3}$ chance of getting a $B$, independently of what she gets in English. What is the probability that Rachelle will get a GPA of at least 3.5?

395
An unfair coin lands on heads with a probability of $\tfrac{1}{4}$. When tossed $n$ times, the probability of exactly two heads is the same as the probability of exactly three heads. What is the value of $n$ ?

400
Six chairs are evenly spaced around a circular table. One person is seated in each chair. Each person gets up and sits down in a chair that is not the same chair and is not adjacent to the chair he or she originally occupied, so that again one person is seated in each chair. In how many ways can this be done?

412
The doctor gave Amber ten vitamins, with instructions to take one or two each day until she runs out of vitamins. For example, Amber could take a vitamin a day for ten days, or she could take two the first day and one a day for the next eight days. A third way is to take one vitamin a day for eight days and two on the ninth day. Including the three examples given, in how many different ways can Amber take the ten vitamins?

414
A bag initially had blue, red and purple gumballs in the ratio of $2:3:4$. Five red gumballs are added to the bag. The probability of randomly drawing a red gumball is now $40%$. How many gumballs are now in the bag?

428
A fancy bed and breakfast inn has $5$ rooms, each with a distinctive color-coded decor. One day $5$ friends arrive to spend the night. There are no other guests that night. The friends can room in any combination they wish, but with no more than $2$ friends per room. In how many ways can the innkeeper assign the guests to the rooms?

435
Octavius has eight identical blue socks, six identical red socks, four identical black socks and two identical orange socks in his drawer. If he randomly selects two socks from his drawer, what is the probability that they will be the same color? Express your answer as a common fraction.

453
Each of the 25 cells in a five-by-five grid of squares is filled with a 0, 1 or 2 in such a way that the numbers written in neighboring cells differ from the number in that cell by 1. Two cells are considered neighbors if they share a side. How many different arrangements are possible?

458

Fifty tickets numbered with consecutive integers are in a jar. Two are drawn at random and without replacement. What is the probability that the absolute difference between the two numbers is $10$ or less?


462
A set $\mathbb{S}$ consists of triangles whose sides have integer lengths less than $5$, and no two elements of $\mathbb{S}$ are congruent or similar. What is the largest number of elements that $\mathbb{S}$ can have?

470
How many ways are there to arrange the digits 1 through 9 in this $3 \times 3$ grid, such that the numbers are increasing from left to right in each row and increasing from top to bottom in each column?

473

In a small pond there are eleven lily pads in a row labeled $0$ through $10$. A frog is sitting on pad $1$. When the frog is on pad $N$, $0 < N < 10$, it will jump to pad $(N-1)$ with probability $\frac{N}{10}$ and to pad $(N+1)$ with probability $1-\frac{N}{10}$. Each jump is independent of the previous jumps. If the frog reaches pad $0$ it will be eaten by a patiently waiting snake. If the frog reaches pad $10$ it will exit the pond, never to return. What is the probability that the frog will escape without being eaten by the snake?


474
The number $2017$ is prime. Let $S = \sum \limits_{k=0}^{62} \dbinom{2014}{k}$. What is the remainder when $S$ is divided by $2017$?

491
Rabbits Peter and Pauline have three offspring: Flopsie, Mopsie, and Cotton-tail. These five rabbits are to be distributed to four different pet stores so that no store gets both a parent and a child. It is not required that every store gets a rabbit. In how many different ways can this be done?

496
Let $S$ be the set $\{1,2,3,...,19\}$. For $a,b \in S$, define $a \succ b$ to mean that either $0 < a - b \le 9$ or $b - a > 9$. How many ordered triples $(x,y,z)$ of elements of $S$ have the property that $x \succ y$, $y \succ z$, and $z \succ x$?

498
A palindrome is a nonnegative integer number that reads the same forwards and backwards when written in base 10 with no leading zeros. A 6-digit palindrome $n$ is chosen uniformly at random. What is the probability that $\frac{n}{11}$ is also a palindrome?

500
Three distinct segments are chosen at random among the segments whose end-points are the vertices of a regular 12-gon. What is the probability that the lengths of these three segments are the three side lengths of a triangle with positive area?

513
Cities $A$, $B$, $C$, $D$, and $E$ are connected by roads $\widetilde{AB}$, $\widetilde{AD}$, $\widetilde{AE}$, $\widetilde{BC}$, $\widetilde{BD}$, $\widetilde{CD}$, and $\widetilde{DE}$. How many different routes are there from $A$ to $B$ that use each road exactly once? (Such a route will necessarily visit some cities more than once.)


528
If $p$ is the maximum number of points of intersection possible of $n$ distinct lines, and the ratio $p:n = 6:1$, what is the value of n?

536

Using the figure of 15 circles shown, how many sets of three distinct circles A, B and C are there such that circle A encloses circle B, and circle B encloses circle C?


542
A convex sequence is a sequence of integers where each term (other than the first and last) is no greater than the arithmetic mean of the terms immediately before and after it. For example, the sequence 4, 1, 2, 3 is convex because $1\le\frac{4+2}{2}$ and $2\le\frac{1+3}{2}$. How many convex sequences use each number in the set {1, 2, 3, 4, 5, 6, 7, 8} exactly once?

555
Alex, Mel, and Chelsea play a game that has $6$ rounds. In each round there is a single winner, and the outcomes of the rounds are independent. For each round the probability that Alex wins is $\frac{1}{2}$, and Mel is twice as likely to win as Chelsea. What is the probability that Alex wins three rounds, Mel wins two rounds, and Chelsea wins one round?

559
A $3 \times 3$ square is partitioned into $9$ unit squares. Each unit square is painted either white or black with each color being equally likely, chosen independently and at random. The square is then rotated $90\,^{\circ}$ clockwise about its center, and every white square in a position formerly occupied by a black square is painted black. The colors of all other squares are left unchanged. What is the probability the grid is now entirely black?

564
Consider the polynomial \[P(x)=\prod_{k=0}^{10}(x^{2^k}+2^k)=(x+1)(x^2+2)(x^4+4)\cdots (x^{1024}+1024)\] The coefficient of $x^{2012}$ is equal to $2^a$. What is $a$?

567
Let $S$ be the square one of whose diagonals has endpoints $(0.1,0.7)$ and $(-0.1,-0.7)$. A point $v=(x,y)$ is chosen uniformly at random over all pairs of real numbers $x$ and $y$ such that $0 \le x \le 2012$ and $0\le y\le 2012$. Let $T(v)$ be a translated copy of $S$ centered at $v$. What is the probability that the square region determined by $T(v)$ contains exactly two points with integer coefficients in its interior?