Ten people form a line, among which two are Chinese and two are Americans. Find the probability that both Chinese will stand in front of both Americans (not necessarily immediately in the front).
The nine delegates to the Economic Cooperation Conference include $2$ officials from Mexico, $3$ officials from Canada, and $4$ officials from the United States. During the opening session, three of the delegates fall asleep. Assuming that the three sleepers were determined randomly, find the probability that exactly two of the sleepers are from the same country.
Call a permutation $a_1, a_2, \ldots, a_n$ of the integers $1, 2, \ldots, n$ quasi-increasing if $a_k \leq a_{k+1} + 2$ for each $1 \leq k \leq n-1$. For example, $53421$ and $14253$ are quasi-increasing permutations of the integers $1$, $2$, $3$, $4$, $5$, but $45123$ is not. Find the number of quasi-increasing permutations of the integers $1$, $2$, $\ldots$, $7$.
There are $2^{10} = 1024$ possible $10$-letter strings in which each letter is either an $A$ or a $B$. Find the number of such strings that do not have more than $3$ adjacent letters that are identical.
Let $A={1,2,3,4}$, and $f$ and $g$ be randomly chosen (not necessarily distinct) functions from $A$ to $A$. Find the probability that the range of $f$ and the range of $g$ are disjoint.
A $7\times 1$ board is completely covered by $m\times 1$ tiles without overlap; each tile may cover any number of consecutive squares, and each tile lies completely on the board. Each tile is either red, blue, or green. Let $N$ be the number of tilings of the $7\times 1$ board in which all three colors are used at least once. For example, a $1\times 1$ red tile followed by a $2\times 1$ green tile, a $1\times 1$ green tile, a $2\times 1$ blue tile, and a $1\times 1$ green tile is a valid tiling. Note that if the $2\times 1$ blue tile is replaced by two $1\times 1$ blue tiles, this results in a different tiling. Find $N$.
Jackie and Phil have two fair coins and a third coin that comes up heads with probability $\frac47$. Jackie flips the three coins, and then Phil flips the three coins. Let $\frac {m}{n}$ be the probability that Jackie gets the same number of heads as Phil, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
There are $n$ points, $A_1$, $A_2$, $\cdots$, $A_n$ on a line segment, $\overline{A_0A_{n+1}}$. The point $A_0$ is black, $A_{n+1}$ is white, and the rest points are colored randomly either black or white. Prove: among these $n+1$ line segments $A_kA_{k+1}$, where $k=0, 1, \cdots, n$, the number of those with different colored ending points is odd.
In a small pond there are eleven lily pads in a row labeled $0$ through $10$. A frog is sitting on pad $1$. When the frog is on pad $N$, $0 < N < 10$, it will jump to pad $(N-1)$ with probability $\frac{N}{10}$ and to pad $(N+1)$ with probability $1-\frac{N}{10}$. Each jump is independent of the previous jumps. If the frog reaches pad $0$ it will be eaten by a patiently waiting snake. If the frog reaches pad $10$ it will exit the pond, never to return. What is the probability that the frog will escape without being eaten by the snake?
A parking lot has $16$ spaces in a row. Twelve cars arrive, each of which requires one parking space, and their drivers chose spaces at random from among the available spaces. Auntie Em then arrives in her SUV, which requires $2$ adjacent spaces. What is the probability that she is able to park?
How many non-congruent triangles have vertices at three of the eight points in the array shown below?
Eight people are sitting around a circular table, each holding a fair coin. All eight people flip their coins and those who flip heads stand while those who flip tails remain seated. What is the probability that no two adjacent people will stand?
How many ways can all six numbers in the set $\{4, 3, 2, 12, 1, 6\}$ be ordered so that $a$ comes before $b$ whenever $a$ is a divisor of $b$?
How many collections of six positive, odd integers have a sum of $18$? Note that $1 + 1 + 1 + 3 + 3 + 9$ and $9 + 1 + 3 + 1 + 3 + 1$ are considered to be the same collection.