Practice (68)

back to index  |  new

In the small country of Mathland, all automobile license plates have four symbols. The first must be a vowel (A, E, I, O, or U), the second and third must be two different letters among the 21 non-vowels, and the fourth must be a digit (0 through 9). If the symbols are chosen at random subject to these conditions, what is the probability that the plate will read "AMC8"?

How many pairs of parallel edges, such as $\overline{AB}$ and $\overline{GH}$ or $\overline{EH}$ and $\overline{FG}$, does a cube have?

At Euler Middle School, $198$ students voted on two issues in a school referendum with the following results: $149$ voted in favor of the first issue and $119$ voted in favor of the second issue. If there were exactly $29$ students who voted against both issues, how many students voted in favor of both issues?

In a middle-school mentoring program, a number of the sixth graders are paired with a ninth-grade student as a buddy. No ninth grader is assigned more than one sixth-grade buddy. If $\tfrac{1}{3}$ of all the ninth graders are paired with $\tfrac{2}{5}$ of all the sixth graders, what fraction of the total number of sixth and ninth graders have a buddy?

A word is an ordered, non-empty sequence of letters, such as word or wrod. How many distinct words can be made from a subset of the letters $\textit{c, o, m, b, o}$, where each letter in the list is used no more than the number of times it appears?

How many different ways are there to put 10 different balls into 5 different boxes such that no box is empty or contains more than 4 balls.

A total of $2018$ tickets, numbered $1$, $2$, $3$, $\cdots$, $2014$, $2015$ are placed in an empty bag. Alfrid removes ticket $a$ from the bag. Bernice then removes ticket $b$ from the bag. Finally, Charlie removes ticket $c$ from the bag. They notice that $a < b < c$ and $a + b + c = 2018$. In how many ways could this happen?


Show that $$\binom{n}{k} = \frac{n}{k}\binom{n-1}{k-1}$$


Let positive integers $m\le k \le n$. Show that $$\binom{n}{k}\binom{k}{m} =\binom{n}{m}\binom{n-m}{k-m} =\binom{n}{k-m}\binom{n-k+m}{m}$$


Show that $$\binom{n}{0}+\frac{1}{2}\binom{n}{1}+\frac{1}{3}\binom{n}{2}+\cdots+\frac{1}{n+1}\binom{n}{n}=\frac{2^{n+1}-1}{n+1}$$

Using at least two approaches to prove $$\binom{n}{1} + 2\binom{n}{2} + 3\binom{n}{3} + \cdots +n\binom{n}{n} = n\cdot 2^{n-1}$$

Compute the value of $$\displaystyle\sum_{k=1}^n k^2\binom{n}{k}$$

Simplify: $1\times 2 + 2\times 3 + 3\times 4 + \cdots + 2015 \times 2016$

Find the remainder when $1\times 2 + 2\times 3 + 3\times 4 + \cdots + 2018\times 2019$ is divided by $2020$.


Let $X$ be the integer part of $\left(3+\sqrt{7}\right)^n$ where $n$ is a positive integer. Show that $X$ must be odd.

Let $n$ be a positive integer. Show that the smallest integer that is larger than $(1+\sqrt{3})^{2n}$ is divisible by $2^{n+1}$.

Let $m=4k+1$ where $k$ is a non-negative integer. Show that $$a=\binom{n}{1}+m\binom{n}{3}+m^2\binom{n}{5}+\cdots+m^{\frac{n-1}{2}}\binom{n}{n}$$

is divisible by $2^{n-1}$, where $n$ is an odd number.


Let sequence $\{a_n\}$ satisfy $a_0=0, a_1=1$, and $a_n = 2a_{n-1}+a_{n-2}$. Show that $2^k\mid n$ if and only if $2^k\mid a_n$.

Show that the following inequality holds for any positive integer $n$: $$(2n+1)^n \ge (2n)^n + (2n-1)^n$$

Let $a$ and $b$ be two positive real numbers. Show that if $\frac{1}{a}+\frac{1}{b}=1$. Prove that the following inequality holds for any positive integer $n$: $$(a+b)^n-a^n-b^n\ge 2^{2n}-2^{n+1}$$

Let $\{a_n\}$ be a sequence defined as $a_n=\lfloor{n\sqrt{2}}\rfloor$ where $\lfloor{x}\rfloor$ indicates the largest integer not exceeding $x$. Show that this sequence has infinitely many square numbers.

Let the integer and decimal part of $(5\sqrt{2}+7)^{2n+1}$ be $I$ and $D$ respectively. Show that $(I+D)D$ is a constant.

Let $n$ be a non-negative integer. Show that $2^{n+1}$ divides the value of $\left\lfloor{(1+\sqrt{3})^{2n+1}}\right\rfloor$ where function $\lfloor{x}\rfloor$ returns the largest integer not exceeding the give real number $x$.


Let $a$, $b$ be two positive real numbers, and $n$ be a positive integer greater than $2$. Show that $$\frac{a^n+a^{n-1}b+\cdots+ab^{-1}+b^n}{n+1}\ge \Big(\frac{a+b}{2}\Big)^n$$

If the $5^{th}$, $6^{th}$ and $7^{th}$ coefficients in the expansion of $(x^{-\frac{4}{3}}+x)^n$ form an arithmetic sequence, find the constant term in the expanded form.