Loading [MathJax]/jax/output/HTML-CSS/jax.js


Practice (34)

back to index  |  new

Compute 02x3+4x2+7x20x2+4x+8dx+202x37x2+9x10x2+4dx


Compute π02xsinx3+cos2xdx


Given that the value ln(2) is not the root of any polynomial with rational coefficients. For any nonnegative integer n, let pn(x) be the unique polynomial with integer coefficients such that pn(ln(2))=21(ln(x))ndx

Compute the value of the n=01pn(0)


The set of points (x,y) in the plane satisfying x2/5+|y|=1 form a curve enclosing a region. Compute the area of this region.


Compute the value of 204xxx4xdx


Find the value of I=esinxsin(2x)(1sinx)2dx


Let f(x)={cosx,x[π2,0)ex,x[0,1]

Compute 1π2f(x)dx.


Compute 1sinxdx


Compute π401sinx+cosxdx


Compute 1ax+bdx


Compute 1x2axdx


Compute 1a2x2dx


Compute x1+x2dx


Compute lnxxdx


Compute sin5xdx


Compute secxdx


Compute secxdx


Compute 1x2+1dx


Compute 1x2+4x+5dx


Compute x3lnxdx


Compute arctanxdx


Evaluate eaxcos(bx)dxandeaxsin(bx)dx


Evaluate x2exdx


Evaluate x2sinxdx


Compute x2+a2dx