David found four sticks of different lengths that can be used to form three non-congruent convex cyclic quadrilaterals, $A,\text{ }B,\text{ }C$, which can each be inscribed in a circle with radius $1$. Let $\varphi_A$ denote the measure of the acute angle made by the diagonals of quadrilateral $A$, and define $\varphi_B$ and $\varphi_C$ similarly. Suppose that $\sin\varphi_A=\frac{2}{3}$, $\sin\varphi_B=\frac{3}{5}$, and $\sin\varphi_C=\frac{6}{7}$. All three quadrilaterals have the same area $K$, which can be written in the form $\dfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
Points $A$, $B$, and $C$ lie in that order along a straight path where the distance from $A$ to $C$ is $1800$ meters. Ina runs twice as fast as Eve, and Paul runs twice as fast as Ina. The three runners start running at the same time with Ina starting at $A$ and running toward $C$, Paul starting at $B$ and running toward $C$, and Eve starting at $C$ and running toward $A$. When Paul meets Eve, he turns around and runs toward $A$. Paul and Ina both arrive at $B$ at the same time. Find the number of meters from $A$ to $B$.
Let $a_{0} = 2$, $a_{1} = 5$, and $a_{2} = 8$, and for $n > 2$ define $a_{n}$ recursively to be the remainder when $4$($a_{n-1}$ $+$ $a_{n-2}$ $+$ $a_{n-3}$) is divided by $11$. Find $a_{2018}$ • $a_{2020}$ • $a_{2022}$.
Find the sum of all positive integers $b < 1000$ such that the base-$b$ integer $36_{b}$ is a perfect square and the base-$b$ integer $27_{b}$ is a perfect cube.
In equiangular octagon $CAROLINE$, $CA = RO = LI = NE =$ $\sqrt{2}$ and $AR = OL = IN = EC = 1$. The self-intersecting octagon $CORNELIA$ encloses six non-overlapping triangular regions. Let $K$ be the area enclosed by $CORNELIA$, that is, the total area of the six triangular regions. Then $K =$ $\dfrac{a}{b}$, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.
A real number $a$ is chosen randomly and uniformly from the interval $[-20, 18]$. The probability that the roots of the polynomial $x^4 + 2ax^3 + (2a - 2)x^2 + (-4a + 3)x - 2$ are all real can be written in the form $\dfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
Misha rolls a standard, fair six-sided die until she rolls $1-2-3$ in that order on three consecutive rolls. Find the probability that she will roll the die an odd number of times.
Compute: $1\times 2\times 3 + 2\times 3\times 4 + \cdots + 18\times 19\times 20$.
Find the number of non-negative integer solutions to the following equation: $$x_1+x_2+\cdots+x_5=14$$
Find the number of integer solutions to the following equation: $$x_1+x_2+\cdots+x_6=12$$
where $x_1, x_5\ge 0$ and $x_2, x_3, x_4 > 0$
(Hockey Sticker Identity) Show that for any positive integer $n \ge k$, the following relationship holds: $$\binom{k}{k} +\binom{k+1}{k} + \binom{k+2}{k} + \cdots + \binom{n}{k} = \binom{n+1}{k+1} $$
Find the number of integer pairs $(x, y)$ such that $x^2 + y^2 = 2019$.
If a square number's tens digit is $7$, what is its units digit?
There are $100$ lights lined up in a long room. Each light has its own switch and is currently off. The room has an entry door and an exit door. There are $100$ people lined up outside the entry door. Each light is numbered consecutively from $1$ to $100$. So is each person.
Person No. $1$ enters the room, switches on every light, and exits. Person No. $2$ enters and flips the switch on every second light (i.e. turn off lights $2$, $4$, $6$...). Person No. $3$ enters and flips the switch on every third light (i.e. toggle lights $3$, $6$, $9$...). This continues until all $100$ people have passed through the room. How many of the lights are on at the end?
Let $n^2$ be a square number, show that $n^2\equiv 0, 1\pmod{4}$.
Show that if $n^2$ is a square number, then $n^2\equiv 0, 1, 4, 9\pmod{16}$.
In plain English, this means that the remainder can only be $0$, $1$, $4$ or $9$ when a square number is divided by $16$.
Find the number of non-decrease sequences of length $n$ and each element is a non-negative integer not exceeding $d$.
Find, with proof, all pairs of positive integers $(n, d)$ with the following property: for every integer $S$, there exists a unique non-decreasing sequence of n integers $a_1$, $a_2$, $\cdots$, $a_n$ such that $a_1 + a_2 + \cdots + a_n = S$ and $a_n-a_1 = d$.
How many terms in this sequence are squares? $$1, 11, 111, 1111, \cdots $$
How many terms in this sequence are squares? $$4, 44, 444, 4444, \cdots$$
Let $N$ be an odd square number. Show that $N$'s tens digit must be even.