Practice With Solutions

back to index  |  new

Find all the ordered integers $(a, b, c)$ which satisfy $a+b+c=450$ and $\sqrt{a+\sqrt{b}}+\sqrt{a-\sqrt{b}}=2c$.

Compute $\sqrt{i}$.

Find the value of the following expression: $$\binom{2020}{0}-\binom{2020}{2}+\binom{2020}{4}-\cdots+\binom{2020}{2020}$$

Given integers $a$, $b$, $n$. Show that there exist integers $x$, $y$, such that $$(a^2+b^2)^n = x^2 + y^2$$.


The points $(0,0)$, $(a,11)$, and $(b,37)$ are the vertices of an equilateral triangle. Find the value of $ab$.


Let $(x^{2017}+x^{2019}+2)^{2018} = a_0+a_1x+\cdots+a_nx^n$. Find $$a_0-\frac{a_1}{2}-\frac{a_2}{2}+a_3-\frac{a_4}{2}-\frac{a_5}{2}+a_6-\cdots$$

Solve the equation $$x^4-97x^3+2012x^2-97x+1=0$$

Solve the equation $$\frac{2x}{2x^2-5x+3}+\frac{13x}{2x^2+x+3}=6$$


Find all real numbers $m$ such that $$x^2+my^2-4my+6y-6x+2m+8 \ge 0$$ for every pair of real numbers $x$ and $y$.


Does there exist a polynomial $P(x)$ such that $P(1)=2015$ and $P(2015)=2016$?

Show that $$\sum_{i=0}^n \binom{n}{i}^2 = \binom{2n}{n}$$.

Given $$P(x)=(1+x+x^2)^{100}=a_0+a_1x+\cdots+a_{200}x^{200}$$

Compute the following sums:

  • $S_1=a_0+a_1+a_2+a_3 +\cdots+a_{200}$
  • $S_2=a_0+a_2+a_4+a_6 +\cdots+a_{200}$.

Find the minimal value of $\sqrt{x^2 - 4x + 5} + \sqrt{x^2 +4x +8}$.

How many subsets of $\{2,3,4,5,6,7,8,9\}$ contain at least one prime number?


The number $n$ can be written in base $14$ as $\underline{a}\text{ }\underline{b}\text{ }\underline{c}$, can be written in base $15$ as $\underline{a}\text{ }\underline{c}\text{ }\underline{b}$, and can be written in base $6$ as $\underline{a}\text{ }\underline{c}\text{ }\underline{a}\text{ }\underline{c}\text{ }$, where $a > 0$. Find the base-$10$ representation of $n$.


Kathy has $5$ red cards and $5$ green cards. She shuffles the $10$ cards and lays out $5$ of the cards in a row in a random order. She will be happy if and only if all the red cards laid out are adjacent and all the green cards laid out are adjacent. For example, card orders $RRGGG$, $GGGGR$, or $RRRRR$ will make Kathy happy, but $RRRGR$ will not. Find the probability that Kathy will be happy.


In $\triangle ABC, AB = AC = 10$ and $BC = 12$. Point $D$ lies strictly between $A$ and $B$ on $\overline{AB}$ and point $E$ lies strictly between $A$ and $C$ on $\overline{AC}$ so that $AD = DE = EC$. Then $AD$ can be expressed in the form $\dfrac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.


For each ordered pair of real numbers $(x,y)$ satisfying\[\log_2(2x+y) = \log_4(x^2+xy+7y^2)\]there is a real number $K$ such that\[\log_3(3x+y) = \log_9(3x^2+4xy+Ky^2).\]Find the product of all possible values of $K$.


Let $N$ be the number of complex numbers $z$ with the properties that $|z|=1$ and $z^{6!}-z^{5!}$ is a real number. Find the remainder when $N$ is divided by $1000$.


A right hexagonal prism has height $2$. The bases are regular hexagons with side length $1$. Any $3$ of the $12$ vertices determine a triangle. Find the number of these triangles that are isosceles (including equilateral triangles).


Let $ABCDEF$ be an equiangular hexagon such that $AB=6, BC=8, CD=10$, and $DE=12$. Denote by $d$ the diameter of the largest circle that fits inside the hexagon. Find $d^2$.


Find the least positive integer $n$ such that when $3^n$ is written in base $143$, its two right-most digits in base $143$ are $01$.


For every subset $T$ of $U = \{ 1,2,3,\ldots,18 \}$, let $s(T)$ be the sum of the elements of $T$, with $s(\emptyset)$ defined to be $0$. If $T$ is chosen at random among all subsets of $U$, the probability that $s(T)$ is divisible by $3$ is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m$.


Let $\triangle ABC$ have side lengths $AB=30$, $BC=32$, and $AC=34$. Point $X$ lies in the interior of $\overline{BC}$, and points $I_1$ and $I_2$ are the incenters of $\triangle ABX$ and $\triangle ACX$, respectively. Find the minimum possible area of $\triangle AI_1I_2$ as $X$ varies along $\overline{BC}$.


Let $SP_1P_2P_3EP_4P_5$ be a heptagon. A frog starts jumping at vertex $S$. From any vertex of the heptagon except $E$, the frog may jump to either of the two adjacent vertices. When it reaches vertex $E$, the frog stops and stays there. Find the number of distinct sequences of jumps of no more than $12$ jumps that end at $E$.