Practice With Solutions

back to index  |  new

Find an expression for $x_n$ if sequence $\{x_n\}$ satisfies $x_1=2$, $x_2=3$, and $$ \left\{ \begin{array}{ccll} x_{2k+1}&=&x_{2k} +x_{2k-1}&\quad (k\ge 1)\\ x_{2k}&=&x_{2k-1} + 2x_{2k-2}&\quad (k\ge 2) \end{array} \right. $$

Is it possible for a geometric sequence to contain three distinct prime numbers?

Is it possible to construct 12 geometric sequences to contain all the prime between 1 and 100?

Let $d\ne 0$ be the common difference of an arithmetic sequence $\{a_n\}$, and positive rational number $q < 1$ be the common ratio of a geometric sequence $\{b_n\}$. If $a_1=d$, $b_1=d^2$, and $\frac{a_1^2+a_2^2+a_3^2}{b_1+b_2+b_3}$ is a positive integer, what is the value of $q$?

Let $S_n$ be the sum of the first $n$ terms in geometric sequence $\{a_n\}$. If all $a_n$ are real numbers and $S_{10}=10$, and $S_{30}=70$, compute $S_{40}$.

Expanding $$\Big(\sqrt{x}+\frac{1}{2\sqrt[4]{x}}\Big)^n$$ and arranging all the terms in descending order of $x$'s power, if the coefficients of the first three terms form an arithmetic sequence, how many terms with integer power of $x$ are there?

Suppose sequence $\{F_n\}$ is defined as $$F_n=\frac{1}{\sqrt{5}}\Big[\Big(\frac{1+\sqrt{5}}{2}\Big)^n-\Big(\frac{1-\sqrt{5}}{2}\Big)^n\Big]$$ for all $n\in\mathbb{N}$. Let $$S_n=C_n^1\cdot F_1 + C_n^2\cdot F_2+\cdots +C_n^n\cdot F_n.$$ Find all positive integer $n$ such that $S_n$ is divisible by 8.

Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that $$x^2f(x)+f(1-x)=2x-x^4$$

Find all functions $f:\mathbb{Q}\rightarrow\mathbb{Q}$ such that the Cauchy equation $$f(x+y)=f(x)+f(y)$$ holds for all $x, q\in\mathbb{Q}$.

Let real numbers $a, b, c, d$ satisfy $$ \left\{ \begin{array}{ccl} ax+by&=3\\ ax^2+by^2&=7\\ ax^3+by^3&=16\\ ax^4 + by^4 &=42 \end{array} \right. $$ Find $ax^5+by^5$.

Find the range of function $y=x+\sqrt{x^2 -3x+2}$.

Solve $$\Big|\frac{1}{\log_{\frac{1}{2}}x+2}\Big|> \frac{3}{2}$$

If for any non-negative real numbers $x$ and $y$, function $f(x)$ satisfies the properties that $f(x)\ge 0$, $f(1)\ne 0$, and $f(x+y^2)=f(x)+2f^2(y)$ , compute the value of $f(2+\sqrt{3})$.

If the minimal and maximum values of function $$f(x)=-\frac{1}{2}x^2 + \frac{13}{2}$$ in the domain $[a, b]$ are $2a$ and $2b$, respectively, determine the values of $a$ and $b$.

Is function $f(x)=\lg(x+\sqrt{x^2+1})$ an odd or even function?

If real number $x$ satisfies $x^4 - 2x^3 -7x^2 + 8x +12\le 0$, find the max value of $|x+\frac{4}{x}|$


For any real numbers $x$ and $y$, the following holds $$[f(x+y)]^2 = [f(x)]^2 + [f(y)]^2$$ Find the exact form of $f(x)$.

Let $f(x)$ be a polynomial with respect to $x$ and $$f(x+1)+f(x-1)=2x^2-4x$$ Find $f(x)$.

Find the function $f(x)$ such that $f(0)=1$, $f(\frac{\pi}{2})=2$, and for any $x, y\in\mathbb{R}$, $$f(x+y)+f(x-y)=2f(x)\cos y$$

Let the domain of function $f(n)$ be $\mathbb{N}$, $f(1)=1$, and for any $m, n\in\mathbb{N}$, $$f(m+n)=f(m)+f(n)+mn$$ Determine $f(n)$.

Let the domain of function $f(n)$ be $\mathbb{N}$, $f(1)=1$, and for any integer $n \ge 2$, $$f(n)=f(n-1) + 2^{n-1}$$ Determine $f(n)$.

Let real numbers $a$, $b$, and $c$ satisfy $a+b+c=2$ and $abc=4$. Find
  • the minimal value of the largest among $a$, $b$, and $c$.
  • the minimal value of $\mid a\mid +\mid b \mid +\mid c \mid$.

  • If $a\ne 0$ and $\frac{1}{4}(b-c)^2=(a-b)(c-a)$, compute $\frac{b+c}{a}$.

    If all roots of the equation $$x^4-16x^3+(81-2a)x^2 +(16a-142)x+(a^2-21a+68)=0$$ are integers, find the value of $a$ and solve this equation.

    Let real numbers $a, b, c$ satisfy $a > 0$, $b>0$, $2c>a+b$, and $c^2>ab$. Prove $$c-\sqrt{c^2-ab} < a < c +\sqrt{c^2-ab}$$