Determine all polynomials such that $P(0) = 0$ and $P(x^2 + 1) = P(x)^2 + 1$.
Let $n$ be a positive integer and $k$ be an odd positive integer, show $k^{2^n}\equiv 1\pmod{2^{n+2}}$.
Show that there exists an infinite number of squares in the form of $(n\cdot 2^k - 7)$ where $n$ and $k$ are both positive integers.
Show that $$\frac{1}{(1-x)^n}=\sum_{k=0}^{\infty}\binom{n-1+k}{n-1}x^k$$
Let $n$ be a positive integer greater than $1$. Show $$\sum_{k=1}^{n-1}\frac{1}{k(n-k)}\binom{2(k-1)}{k-1}\binom{2(n-k-1)}{n-k-1}=\frac{1}{n}\binom{2(n-1)}{n-1}$$
Show that $$\frac{1}{\sqrt{1-4x}}=\sum_{n=0}^{\infty}\binom{2n}{n}x^n$$
In an election for the Peer Pressure High School student council president, there are $2019$ voters and
two candidates Alice and Celia (who are voters themselves). At the beginning, Alice and Celia both
vote for themselves, and Alice’s boyfriend Bob votes for Alice as well. Then one by one, each of the
remaining $2016$ voters votes for a candidate randomly, with probabilities proportional to the current
number of the respective candidate’s votes. For example, the first undecided voter David has a $2/3$ probability of voting for Alice and a $1/3$ probability of voting for Celia.
What is the probability that Alice wins the election (by having more votes than Celia)?
$\textbf{Cheating Husbands}$
A remote town comprises of $100$ married couples. Everyone in the town lives by the following rule: If a husband cheats on his wife, the husband is executed at the night as soon as his wife finds out about it. All the women in the town only gossip about husbands of other women. No woman ever tells another woman if that woman's husband is cheating on her. So every woman in the town knows about all the cheating husbands in the town except her own. It can also be assumed that a husband remains silent about his infidelity. One day, the mayor of the town announces to the whole town that there is at least $1$ cheating husband in the town. What will happen afterwards?