Practice (Intermediate)

back to index  |  new

Compute $$\sqrt{\frac{2}{2^2}+\sqrt{\frac{2}{2^4}+\sqrt{\frac{2}{2^8}+\cdots}}}$$

Without using a calculator, explain that $$\sqrt{20+\sqrt{20+\sqrt{20}}}-\sqrt{20-\sqrt{20-\sqrt{20}}}\approx 1$$


Simplify $\sqrt{12+2\sqrt{6}+2\sqrt{14}+2\sqrt{21}}$

Simplify $\sqrt{4+\sqrt[3]{81}+4\sqrt[3]{9}}$

A sequence satisfies $a_1 = 3, a_2 = 5$, and $a_{n+2} = a_{n+1} - a_n$ for $n \ge 1$. What is the value of $a_{2018}$?


Let $P(x)$ be a monic polynomial of degree 3. (Monic here means that the coefficient of $x^3$ is 1.) Suppose that the remainder when $P(x)$ is divided by $x^2 - 5x+6$ equals 2 times the remainder when $P(x)$ is divided by $x^2 - 5x + 4$. If $P(0) = 100$, what is $P(5)$?

For $n\ge 1$, let $d_n$ denote the length of the line segment connecting the two points where the line $y = x + n + 1$ intersects the parabola $8x^2 = y - \frac{1}{32}$ . Compute the sum $$\sum_{n=1}^{1000}\frac{1}{n\cdot d_n^2}$$

Let $$f(r) = \displaystyle\sum_{j=2}^{2008}\frac{1}{j^r} = \frac{1}{2^r}+\frac{1}{3^r}+\cdots+\frac{1}{2016^r}$$ Find $$\sum_{k=2}^{\infty}f(k)$$

Evaluate the infinite sum $\displaystyle\sum_{n=1}^{\infty}\frac{n}{n^4+4}$.

Solve the equation $$\sqrt{x+\sqrt{4x+\sqrt{16x+\sqrt{\cdots+\sqrt{4^{2008}x+3}}}}}-\sqrt{x}=1$$

Find the length of the leading non-repeating block in the decimal expansion of $\frac{2004}{7\times 5^{2003}}$. For example the length of the leading non-repeating block of $\frac{5}{12}=0.41\overline{6}$ is $2$.

Write $\sqrt[3]{2+5\sqrt{3+2\sqrt{2}}}$ in the form of $a+b\sqrt{2}$ where $a$ and $b$ are integers.

Let $A, B,$ and $C$ be angles of a triangle. If $\cos 3A + \cos 3B + \cos 3C = 1$, determine the largest angle of the triangle.

Find the value of $\cos 20^\circ \cos 40^\circ \cos 80^\circ$ using at least two difference methods.

Simplofy $\sin\theta + \frac{1}{2}\cdot\sin 2\theta + \frac{1}{4}\cdot\sin 3\theta + \cdots$.

Let $n > k$ be two positive integers. Simplify the following expression $$\binom{n}{k} + 2\binom{n-1}{k} + 3\binom{n-2}{k} + \cdots+ (n-k+1)\binom{k}{k}$$


Let positive integers $m$ and $n$ satisfy $m\le n$. Prove $$\sum_{k=m}^n\binom{n}{k}\binom{k}{m}=2^{n-m}\binom{n}{m}$$

Show that $$\sum_{k=0}^{2n-1}(-1)^k(k+1)\binom{2n}{k}^{-1}=\frac{1}{\binom{2n}{0}}-\frac{2}{\binom{2n}{1}}+\cdots-\frac{2n}{\binom{2n}{2n-1}}=0$$

Compute $$\sum_{n=1}^{\infty}\frac{2}{n^2 + 4n +3}$$

Compute $$\sum_{k=1}^{\infty}\frac{1}{k^2 + k}$$

Compute the value of $$\sum_{n=1}^{\infty}\frac{2n+1}{n^2(n+1)^2}$$

Compute $$\binom{2022}{1} - \binom{2022}{3} + \binom{2022}{5}-\cdots + \binom{2022}{2021}$$

Let $M$ be a point inside $\triangle{ABC}$. Draw $MA'\perp BC$, $MB'\perp CA$, and $MC'\perp AB$ such that $BA'=BC'$ and $CA'=CB'$. Prove $AB'=AC'$.


Four sides of a concyclic quadrilateral have lengths of 25, 39, 52, and 60, in that order. Find the circumference of its circumcircle.

Let $a$ and $b$ be the two roots of $x^2 - 3x -1=0$. Try to solve the following problems without computing $a$ and $b$: 1) Find a quadratic equation whose roots are $a^2$ and $b^2$ 2) Find the value of $\frac{1}{a+1}+\frac{1}{b+1}$ 3) Find the recursion relationship of $x_n=a^n + b^n$ Find as many different solutions as possible.