Practice (23)
Simplify 22−222+2⋅32−332+3⋯102−2102+10
Show that 11×2×3+12×3×4+⋯+1n×(n+1)×(n+2)=n(n+3)4(n+1)(n+2)
Find the value of x3+x2y+xy2+y3 if x=√5+√3√5−√3 and y=√5−√3√5+√3.
Let √1+√21+12√3=√a+√b. Find a+b.
Let a≥0,n≥0, and m>0. Show that √a+m+√a+m+n>√a+√a+2m+n.
Simplify (√10+√11+√12)(√10+√11−√12)(√10−√11+√12)(−√10+√11+√12)
Simplify (3√3+3√2)(3√9−3√6+3√4)
Simplify √1+1995√4+1995⋅1999.
Evaluate √5+√52+√54+√58+...
Compute 111⋯+1+1⋯+1+11⋯+1+1⋯
Use at least two ways to prove √x√x√x√⋯=x
Show that √1+√1+√1+⋯=111+11+⋯=1+√52
Show that, if both converge, √a+b√a+b√a+⋯=b+ab+ab+⋯=b+√b2+4a2
Without using a calculator, explain that √20+√20+√20−√20−√20−√20≈1
Show that √n+√n+√n+⋯=1+√1+4n2 and √n−√n−√n−⋯=−1+√1+4n2