Find the least non-negative residue of $70! \pmod{5183}$.
$\textbf{Heaps of Beans}$
A game starts with four heaps of beans, containing $3$, $4$, $5$ and $6$ beans, respectively. The two players move alternately. A move consists of taking either one bean from a heap, provided at least two beans are left behind in that heap, or a complete heap of two or three beans. The player who takes the last bean wins. Does the first or second player have a winning strategy?
Let $n$ be an even positive integer, and let $p(x)$ be an $n$-degree polynomial such that $p(-k) = p(k)$ for $k = 1, 2, \dots , n$. Prove that there is a polynomial $q(x)$ such that $p(x) = q(x^2)$.
Let $a, b, c$ be distinct integers. Can the polynomial $(x - a)(x - b)(x - c) - 1$ be factored into the product of two polynomials with integer coefficients?
Let $p_1, p_2, \cdots, p_n$ be distinct integers and let $f(x)$ be the polynomial of degree $n$ given by $$f(x) = (x - p_1)(x - p_2)\cdots (x -p_n)$$ Prove that the polynomial $g(x) = (f(x))^2 + 1$ cannot be expressed as the product of two non-constant polynomials with integral coefficients.
Let $P(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ be a polynomial with integral coefficients. Suppose that there exist four distinct integers $a, b, c, d$ with $P(a) = P(b) = P(c) = P(d) = 5$. Prove that there is no integer $k$ satisfying $P(k) = 8$.
Determine all polynomials such that $P(0) = 0$ and $P(x^2 + 1) = P(x)^2 + 1$.
Let $n$ be an integer greater than or equal to 3. Prove that there is a set of $n$ points in the plane such that the distance between any two points is irrational and each set of three points determines a non-degenerate triangle with rational area.
Let $a_n=\binom{200}{n}(\sqrt[3]{6})^{200-n}\left(\frac{1}{\sqrt{2}}\right)^n$, where $n=1$, $2$, $\cdots$, $95$. Find the number of integer terms in $\{a_n\}$.
As shown in diagram below, find the degree measure of $\angle{ADB}$.
An infinite number of equilateral triangles are constructed as shown on the right. Each inner triangle is inscribed in its immediate outsider and is shifted by a constant angle $\beta$. If the area of the biggest triangle equals to the sum of areas of all the other triangles, find the value of $\beta$ in terms of degrees.
In $\triangle{ABC}$, $AE$ and $AF$ trisects $\angle{A}$, $BF$ and $BD$ trisects $\angle{B}$, $CD$ and $CE$ trisects $\angle{C}$. Show that $\triangle{DEF}$ is equilateral.