Practice (2)

back to index  |  new

688
A geometric sequence $(a_n)$ has $a_1=\sin x$, $a_2=\cos x$, and $a_3= \tan x$ for some real number $x$. For what value of $n$ does $a_n=1+\cos x$?

690
Let $ABCD$ be a cyclic quadrilateral. The side lengths of $ABCD$ are distinct integers less than $15$ such that $BC\cdot CD=AB\cdot DA$. What is the largest possible value of $BD$?

691
Monic quadratic polynomial $P(x)$ and $Q(x)$ have the property that $P(Q(x))$ has zeros at $x=-23, -21, -17,$ and $-15$, and $Q(P(x))$ has zeros at $x=-59,-57,-51$ and $-49$. What is the sum of the minimum values of $P(x)$ and $Q(x)$?

692
The set of real numbers $x$ for which \[\dfrac{1}{x-2009}+\dfrac{1}{x-2010}+\dfrac{1}{x-2011}\ge1\] is the union of intervals of the form $a< x \le b$. What is the sum of the lengths of these intervals?

693
For every integer $n\ge2$, let $\text{pow}(n)$ be the largest power of the largest prime that divides $n$. For example $\text{pow}(144)=\text{pow}(2^4\cdot3^2)=3^2$. What is the largest integer $m$ such that $2010^m$ divides $\displaystyle\prod_{n=2}^{5300}\text{pow}(n)$?

694
Kim's flight took off from Newark at 10:34 AM and landed in Miami at 1:18 PM. Both cities are in the same time zone. If her flight took $h$ hours and $m$ minutes, with $0 < m < 60$, what is $h + m$?

696
What number is one third of the way from $\frac14$ to $\frac34$?

700
The first three terms of an arithmetic sequence are $2x - 3$, $5x - 11$, and $3x + 1$ respectively. The $n$th term of the sequence is $2009$. What is $n$?

701
Four congruent rectangles are placed as shown. The area of the outer square is $4$ times that of the inner square. What is the ratio of the length of the longer side of each rectangle to the length of its shorter side?


702
Suppose that $f(x+3)=3x^2 + 7x + 4$ and $f(x)=ax^2 + bx + c$. What is $a+b+c$?

703
In quadrilateral $ABCD$, $AB = 5$, $BC = 17$, $CD = 5$, $DA = 9$, and $BD$ is an integer. What is $BD$?


704
The figures $F_1$, $F_2$, $F_3$, and $F_4$ shown are the first in a sequence of figures. For $n\ge3$, $F_n$ is constructed from $F_{n - 1}$ by surrounding it with a square and placing one more diamond on each side of the new square than $F_{n - 1}$ had on each side of its outside square. For example, figure $F_3$ has $13$ diamonds. How many diamonds are there in figure $F_{20}$?


705
How many positive integers less than $1000$ are $6$ times the sum of their digits?

706
A ship sails $10$ miles in a straight line from $A$ to $B$, turns through an angle between $45^{\circ}$ and $60^{\circ}$, and then sails another $20$ miles to $C$. Let $AC$ be measured in miles. Which of the following intervals contains $AC^2$?


707
A triangle has vertices $(0,0)$, $(1,1)$, and $(6m,0)$, and the line $y = mx$ divides the triangle into two triangles of equal area. What is the sum of all possible values of $m$?

708
For what value of $n$ is $i + 2i^2 + 3i^3 + \cdots + ni^n = 48 + 49i$? Note: here $i = \sqrt { - 1}$.

709
A circle with center $C$ is tangent to the positive $x$ and $y$-axes and externally tangent to the circle centered at $(3,0)$ with radius $1$. What is the sum of all possible radii of the circle with center $C$?

710
Let $a + ar_1 + ar_1^2 + ar_1^3 + \cdots$ and $a + ar_2 + ar_2^2 + ar_2^3 + \cdots$ be two different infinite geometric series of positive numbers with the same first term. The sum of the first series is $r_1$, and the sum of the second series is $r_2$. What is $r_1 + r_2$?

712
Andrea inscribed a circle inside a regular pentagon, circumscribed a circle around the pentagon, and calculated the area of the region between the two circles. Bethany did the same with a regular heptagon (7 sides). The areas of the two regions were $A$ and $B$, respectively. Each polygon had a side length of $2$. Which of the following is true?

714
Let $p(x) = x^3 + ax^2 + bx + c$, where $a$, $b$, and $c$ are complex numbers. Suppose that \[p(2009 + 9002\pi i) = p(2009) = p(9002) = 0\] What is the number of nonreal zeros of $x^{12} + ax^8 + bx^4 + c$?

715
A regular octahedron has side length $1$. A plane parallel to two of its opposite faces cuts the octahedron into the two congruent solids. The polygon formed by the intersection of the plane and the octahedron has area $\frac {a\sqrt {b}}{c}$, where $a$, $b$, and $c$ are positive integers, $a$ and $c$ are relatively prime, and $b$ is not divisible by the square of any prime. What is $a + b + c$?

716
Functions $f$ and $g$ are quadratic, $g(x) = - f(100 - x)$, and the graph of $g$ contains the vertex of the graph of $f$. The four $x$-intercepts on the two graphs have $x$-coordinates $x_1$, $x_2$, $x_3$, and $x_4$, in increasing order, and $x_3 - x_2 = 150$. The value of $x_4 - x_1$ is $m + n\sqrt p$, where $m$, $n$, and $p$ are positive integers, and $p$ is not divisible by the square of any prime. What is $m + n + p$?

717
The tower function of twos is defined recursively as follows: $T(1) = 2$ and $T(n + 1) = 2^{T(n)}$ for $n\ge1$. Let $A = (T(2009))^{T(2009)}$ and $B = (T(2009))^A$. What is the largest integer $k$ such that \[\underbrace{\log_2\log_2\log_2\ldots\log_2B}_{k\text{ times}}\] is defined?

718
The first two terms of a sequence are $a_1 = 1$ and $a_2 = \frac {1}{\sqrt3}$. For $n\ge1$, \[a_{n + 2} = \frac {a_n + a_{n + 1}}{1 - a_na_{n + 1}}.\] What is $|a_{2009}|$?

719
Each morning of her five-day workweek, Jane bought either a 50-cent muffin or a 75-cent bagel. Her total cost for the week was a whole number of dollars, How many bagels did she buy?