A spinner is divided into 5 sectors as shown. Each of the central angles of sectors 1 through 3 measures $60^\circ$ while each of the central angles of sectors 4 and 5 measures $90^\circ$. If the spinner is spun twice, what is the probability that at least one spin lands on an even number? Express your answer as a common fraction.
Kathy has $5$ red cards and $5$ green cards. She shuffles the $10$ cards and lays out $5$ of the cards in a row in a random order. She will be happy if and only if all the red cards laid out are adjacent and all the green cards laid out are adjacent. For example, card orders $RRGGG$, $GGGGR$, or $RRRRR$ will make Kathy happy, but $RRRGR$ will not. Find the probability that Kathy will be happy.
For every subset $T$ of $U = \{ 1,2,3,\ldots,18 \}$, let $s(T)$ be the sum of the elements of $T$, with $s(\emptyset)$ defined to be $0$. If $T$ is chosen at random among all subsets of $U$, the probability that $s(T)$ is divisible by $3$ is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m$.
Given randomly selected $5$ distinct positive integers not exceeding $90$, what is the expected average value of the fourth largest number?
Real numbers x, y, and z are chosen from the interval $[−1, 1]$ independently and uniformly at random.
What is the probability that $$|x| + |y| + |z| + |x + y + z| = |x + y| + |y + z| + |z + x|$$
Reimu and Sanae play a game using $4$ fair coins. Initially both sides of each coin are white. Starting
with Reimu, they take turns to color one of the white sides either red or green. After all sides are
colored, the 4 coins are tossed. If there are more red sides showing up, then Reimu wins, and if there
are more green sides showing up, then Sanae wins. However, if there is an equal number of red sides
and green sides, then neither of them wins. Given that both of them play optimally to maximize the
probability of winning, what is the probability that Reimu wins?
Yannick is playing a game with $100$ rounds, starting with $1$ coin. During each round, there is a $n\%$ chance that he gains an extra coin, where $n$ is the number of coins he has at the beginning of the
round. What is the expected number of coins he will have at the end of the game?
The probability of a specific parking slot gets occupied is $\frac{1}{3}$ on any single day. If you find this slot vacant for $9$ consecutive days, what is the probability that it will be vacant on the $10^{th}$ day?
$\textbf{Coin Toss}$
Joe tosses a coin. If he gets heads, he stops, otherwise he tosses again. If the second toss is heads, he stops. Otherwise, he tosses the coin again. The process continues until either he gets heads or $100$ tosses have been done. What is the ratio of heads to tails in all the possible scenarios?
$\textbf{Animal Kingdom}$
In an animal kingdom, there are $n$ carnivores and $m$ herbivores. When two herbivores meet, nothing will happen. When two carnivores meet, both will die. If one herbivore meets one carnivore, the herbivore will die. All such meets can only happen between two animals. All living animals will meet another one sooner or later. If a new animal, either a carnivore or a herbivore, enters this kingdom, what is its probability of survival?
Three ants sit at the three vertices of an equilateral triangle. At the same moment, they all start moving along the edge of the triangle at the same speed but each of them randomly chooses a direction independently. What is the probability that none of the ants collides?
$\textbf{Boys v.s. Girls}$
In a remote town, people generally prefer boys over girls. Therefore, every married couple will continue giving birth to a baby until they have a son. Assuming there is fifty-fifty chance for a couple to give birth to a boy or a girl, what is the ratio of boys to girls in this town over many years?
$\textbf{Offer Letter}$
After a whole day of interviews, a HR manager comes with three sealed envelopes. One of them contains an offer letter, and the other two contain rejection letters. You can select one of them and will be hired if you get the offer letter. After you pick one envelope, the HR manager opens one of the other two which contains a rejection letter and offers you a chance to change your mind. Should you change your selection? Explain.