Reimu and Sanae play a game using $4$ fair coins. Initially both sides of each coin are white. Starting
with Reimu, they take turns to color one of the white sides either red or green. After all sides are
colored, the 4 coins are tossed. If there are more red sides showing up, then Reimu wins, and if there
are more green sides showing up, then Sanae wins. However, if there is an equal number of red sides
and green sides, then neither of them wins. Given that both of them play optimally to maximize the
probability of winning, what is the probability that Reimu wins?