Practice (46)

back to index  |  new

What is the angle bisector's theorem?

In $\triangle ABC$, $AB = 6$, $BC = 7$, and $CA = 8$. Point $D$ lies on $\overline{BC}$, and $\overline{AD}$ bisects $\angle BAC$. Point $E$ lies on $\overline{AC}$, and $\overline{BE}$ bisects $\angle ABC$. The bisectors intersect at $F$. What is the ratio $AF$ : $FD$?


In $\triangle ABC$ shown in the figure, $AB=7$, $BC=8$, $CA=9$, and $\overline{AH}$ is an altitude. Points $D$ and $E$ lie on sides $\overline{AC}$ and $\overline{AB}$, respectively, so that $\overline{BD}$ and $\overline{CE}$ are angle bisectors, intersecting $\overline{AH}$ at $Q$ and $P$, respectively. What is $PQ$?


In $\triangle ABC$ let $I$ be the center of the inscribed circle, and let the bisector of $\angle ACB$ intersect $\overline{AB}$ at $L$. The line through $C$ and $L$ intersects the circumscribed circle of $\triangle ABC$ at the two points $C$ and $D$. If $LI=2$ and $LD=3$, then $IC= \frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.

We are given a triangle with the following property: one of its angles is quadrisected (divided into four equal angles) by the height, the angle bisector, and the median from that vertex. This property uniquely determines the triangle (up to scaling). Find the measure of the quadrisected angle.

Compute $\sin 15^\circ$ and $\cos 15^\circ$ using a geometry approach.