Practice (41)

back to index  |  new

As shown below, convex pentagon $ABCDE$ has sides $AB=3$, $BC=4$, $CD=6$, $DE=3$, and $EA=7$. The pentagon is originally positioned in the plane with vertex $A$ at the origin and vertex $B$ on the positive $x$-axis. The pentagon is then rolled clockwise to the right along the $x$-axis. Which side will touch the point $x=2009$ on the $x$-axis?


Points $A$ and $C$ lie on a circle centered at $O$, each of $\overline{BA}$ and $\overline{BC}$ are tangent to the circle, and $\triangle ABC$ is equilateral. The circle intersects $\overline{BO}$ at $D$. What is $\frac{BD}{BO}$?

Triangle $ABC$ has a right angle at $B$, $AB=1$, and $BC=2$. The bisector of $\angle BAC$ meets $\overline{BC}$ at $D$. What is $BD$?


The keystone arch is an ancient architectural feature. It is composed of congruent isosceles trapezoids fitted together along the non-parallel sides, as shown. The bottom sides of the two end trapezoids are horizontal. In an arch made with $9$ trapezoids, let $x$ be the angle measure in degrees of the larger interior angle of the trapezoid. What is $x$?


Older television screens have an aspect ratio of $4: 3$. That is, the ratio of the width to the height is $4: 3$. The aspect ratio of many movies is not $4: 3$, so they are sometimes shown on a television screen by "letterboxing" - darkening strips of equal height at the top and bottom of the screen, as shown. Suppose a movie has an aspect ratio of $2: 1$ and is shown on an older television screen with a $27$-inch diagonal. What is the height, in inches, of each darkened strip?


A right triangle has perimeter $32$ and area $20$. What is the length of its hypotenuse?

Rectangle $PQRS$ lies in a plane with $PQ=RS=2$ and $QR=SP=6$. The rectangle is rotated $90^\circ$ clockwise about $R$, then rotated $90^\circ$ clockwise about the point $S$ moved to after the first rotation. What is the length of the path traveled by point $P$?

A round table has radius $4$. Six rectangular place mats are placed on the table. Each place mat has width $1$ and length $x$ as shown. They are positioned so that each mat has two corners on the edge of the table, these two corners being end points of the same side of length $x$. Further, the mats are positioned so that the inner corners each touch an inner corner of an adjacent mat. What is $x$?


Points $B$ and $C$ lie on $\overline{AD}$. The length of $\overline{AB}$ is $4$ times the length of $\overline{BD}$, and the length of $\overline{AC}$ is $9$ times the length of $\overline{CD}$. The length of $\overline{BC}$ is what fraction of the length of $\overline{AD}$?

An equilateral triangle of side length $10$ is completely filled in by non-overlapping equilateral triangles of side length $1$. How many small triangles are required?

Quadrilateral $ABCD$ has $AB = BC = CD$, angle $ABC = 70$ and angle $BCD = 170$. What is the measure of angle $BAD$?

Triangles $ABC$ and $ADC$ are isosceles with $AB=BC$ and $AD=DC$. Point $D$ is inside triangle $ABC$, angle $ABC$ measures 40 degrees, and angle $ADC$ measures 140 degrees. What is the degree measure of angle $BAD$?

A triangle with side lengths in the ratio $3 : 4 : 5$ is inscribed in a circle with radius 3. What is the area of the triangle?

Circles centered at $A$ and $B$ each have radius $2$, as shown. Point $O$ is the midpoint of $\overline{AB}$, and $OA = 2\sqrt {2}$. Segments $OC$ and $OD$ are tangent to the circles centered at $A$ and $B$, respectively, and $EF$ is a common tangent. What is the area of the shaded region $ECODF$?


The point $O$ is the center of the circle circumscribed about $\triangle ABC,$ with $\angle BOC=120^\circ$ and $\angle AOB=140^\circ,$ as shown. What is the degree measure of $\angle ABC?$

All sides of the convex pentagon $ABCDE$ are of equal length, and $\angle A= \angle B = 90^\circ.$ What is the degree measure of $\angle E?$

The angles of quadrilateral $ABCD$ satisfy $\angle A=2 \angle B=3 \angle C=4 \angle D.$ What is the degree measure of $\angle A,$ rounded to the nearest whole number?

Point $P$ is inside equilateral $\triangle ABC$. Points $Q$, $R$, and $S$ are the feet of the perpendiculars from $P$ to $\overline{AB}$, $\overline{BC}$, and $\overline{CA}$, respectively. Given that $PQ=1$, $PR=2$, and $PS=3$, what is $AB$?

Right $\triangle ABC$ has $AB=3, BC=4,$ and $AC=5.$ Square $XYZW$ is inscribed in $\triangle ABC$ with $X$ and $Y$ on $\overline{AC}, W$ on $\overline{AB},$ and $Z$ on $\overline{BC}.$ What is the side length of the square?

The $8\times18$ rectangle $ABCD$ is cut into two congruent hexagons, as shown, in such a way that the two hexagons can be repositioned without overlap to form a square. What is $y$?


How many non-similar triangles have angles whose degree measures are distinct positive integers in arithmetic progression?

Circles with centers $A$ and $B$ have radii 3 and 8, respectively. A common internal tangent intersects the circles at $C$ and $D$, respectively. Lines $AB$ and $CD$ intersect at $E$, and $AE=5$. What is $CD$?


A $2 \times 3$ rectangle and a $3 \times 4$ rectangle are contained within a square without overlapping at any point, and the sides of the square are parallel to the sides of the two given rectangles. What is the smallest possible area of the square?

A region is bounded by semicircular arcs constructed on the side of a square whose sides measure $\frac{2}{\pi}$, as shown. What is the perimeter of this region?


In a triangle with integer side lengths, one side is three times as long as a second side, and the length of the third side is 15. What is the greatest possible perimeter of the triangle?