Practice (40)

back to index  |  new

Let $\triangle{ABC}$ be a right triangle whose sides lengths are all integers. If $\triangle{ABC}$'s perimeter is 30, find its incircle's area.

Let $a, b$, and $c$ be three positive integers such that $\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{c^2}$. Find the sum of all possible $a$ where $a \le 100$.


A rug is made with three different colors as shown. The areas of the three differently colored regions form an arithmetic progression. The inner rectangle is one foot wide, and each of the two shaded regions is $1$ foot wide on all four sides. What is the length in feet of the inner rectangle?

What is the area of the shaded region of the given $8 \times 5$ rectangle?

Seven cookies of radius $1$ inch are cut from a circle of cookie dough, as shown. Neighboring cookies are tangent, and all except the center cookie are tangent to the edge of the dough. The leftover scrap is reshaped to form another cookie of the same thickness. What is the radius in inches of the scrap cookie?


A triangle with vertices $A(0, 2)$, $B(-3, 2)$, and $C(-3, 0)$ is reflected about the $x$-axis, then the image $\triangle A'B'C'$ is rotated counterclockwise about the origin by $90^{\circ}$ to produce $\triangle A''B''C''$. Which of the following transformations will return $\triangle A''B''C''$ to $\triangle ABC$?

In rectangle $ABCD,$ $AB=6$ and $BC=3$. Point $E$ between $B$ and $C$, and point $F$ between $E$ and $C$ are such that $BE=EF=FC$. Segments $\overline{AE}$ and $\overline{AF}$ intersect $\overline{BD}$ at $P$ and $Q$, respectively. The ratio $BP:PQ:QD$ can be written as $r:s:t$ where the greatest common factor of $r,s$ and $t$ is 1. What is $r+s+t$?

A quadrilateral is inscribed in a circle of radius $200\sqrt{2}$. Three of the sides of this quadrilateral have length $200$. What is the length of the fourth side?

The five small shaded squares inside this unit square are congruent and have disjoint interiors. The midpoint of each side of the middle square coincides with one of the vertices of the other four small squares as shown. The common side length is $\tfrac{a-\sqrt{2}}{b}$, where $a$ and $b$ are positive integers. What is $a+b$ ? [asy] real x=.369; draw((0,0)--(0,1)--(1,1)--(1,0)--cycle); filldraw((0,0)--(0,x)--(x,x)--(x,0)--cycle, gray); filldraw((0,1)--(0,1-x)--(x,1-x)--(x,1)--cycle, gray); filldraw((1,1)--(1,1-x)--(1-x,1-x)--(1-x,1)--cycle, gray); filldraw((1,0)--(1,x)--(1-x,x)--(1-x,0)--cycle, gray); filldraw((.5,.5-x*sqrt(2)/2)--(.5+x*sqrt(2)/2,.5)--(.5,.5+x*sqrt(2)/2)--(.5-x*sqrt(2)/2,.5)--cycle, gray); [/asy]

In $\triangle ABC$, $AB = 6$, $BC = 7$, and $CA = 8$. Point $D$ lies on $\overline{BC}$, and $\overline{AD}$ bisects $\angle BAC$. Point $E$ lies on $\overline{AC}$, and $\overline{BE}$ bisects $\angle ABC$. The bisectors intersect at $F$. What is the ratio $AF$ : $FD$?


Let $ABCD$ be a square. Let $E, F, G$ and $H$ be the centers, respectively, of equilateral triangles with bases $\overline{AB}, \overline{BC}, \overline{CD},$ and $\overline{DA},$ each exterior to the square. What is the ratio of the area of square $EFGH$ to the area of square $ABCD$?

Let $\triangle{ABC}$ be a right triangle where $\angle{C} = 90^\circ$. If point $D$ is on side $BC$ or its extension, show that $$AB^2 = DB^2 + DA^2 \pm 2 \cdot DB \cdot DC$$ If $D$ is on $BC$, then the $3^{rd}$ term above takes a positive coefficient. Otherwise, if $D$ is on its extension, it takes a negative coefficient.

Let $\triangle{ABC}$ be an isosceles triangle where $AB=AC$. Show that for any point $P$ on the base $BC$ or its extension, the following relationship holds: $$AP^2 = AB\cdot AC \pm AP\cdot PB$$

In equiangular hexagon $ABCDEF$, if $AB+BC=11$ and $FA-CD=3$, compute $BC+DE$.

All three vertices of $\bigtriangleup ABC$ lie on the parabola defined by $y=x^2$, with $A$ at the origin and $\overline{BC}$ parallel to the $x$-axis. The area of the triangle is $64$. What is the length of $BC$?

A thin piece of wood of uniform density in the shape of an equilateral triangle with side length $3$ inches weighs $12$ ounces. A second piece of the same type of wood, with the same thickness, also in the shape of an equilateral triangle, has side length of $5$ inches. Which of the following is closest to the weight, in ounces, of the second piece?

Rectangle $ABCD$ has $AB=5$ and $BC=4$. Point $E$ lies on $\overline{AB}$ so that $EB=1$, point $G$ lies on $\overline{BC}$ so that $CG=1$. and point $F$ lies on $\overline{CD}$ so that $DF=2$. Segments $\overline{AG}$ and $\overline{AC}$ intersect $\overline{EF}$ at $Q$ and $P$, respectively. What is the value of $\frac{PQ}{EF}$?


A dilatation of the plane—that is, a size transformation with a positive scale factor—sends the circle of radius $2$ centered at $A(2,2)$ to the circle of radius $3$ centered at $A’(5,6)$. What distance does the origin $O(0,0)$, move under this transformation?

What is the area of the region enclosed by the graph of the equation $x^2+y^2=|x|+|y|?$

In regular hexagon $ABCDEF$, points $W$, $X$, $Y$, and $Z$ are chosen on sides $\overline{BC}$, $\overline{CD}$, $\overline{EF}$, and $\overline{FA}$ respectively, so lines $AB$, $ZW$, $YX$, and $ED$ are parallel and equally spaced. What is the ratio of the area of hexagon $WCXYFZ$ to the area of hexagon $ABCDEF$?

A quadrilateral has vertices $P(a,b)$, $Q(b,a)$, $R(-a, -b)$, and $S(-b, -a)$, where $a$ and $b$ are integers with $a>b>0$. The area of $PQRS$ is $16$. What is $a+b$?

In $\triangle ABC$ shown in the figure, $AB=7$, $BC=8$, $CA=9$, and $\overline{AH}$ is an altitude. Points $D$ and $E$ lie on sides $\overline{AC}$ and $\overline{AB}$, respectively, so that $\overline{BD}$ and $\overline{CE}$ are angle bisectors, intersecting $\overline{AH}$ at $Q$ and $P$, respectively. What is $PQ$?


What is the volume of the region in three-dimensional space defined by the inequalities $|x|+|y|+|z|\le1$ and $|x|+|y|+|z-1|\le1$

Given $\triangle{ABC}$, let $m_a, m_b,$ and $m_c$ be the lengths of three medians. Find its area $S_{\triangle{ABC}}$ with respect to $m_a, m_b,$ and $m_c$.

As shown in diagram below, find the degree measure of $\angle{ADB}$.