Find all numbers $n \ge 3$ for which there exists real numbers $a_1, a_2, ..., a_{n+2}$ satisfying $a_{n+1} = a_1, a_{n+2} = a_2$ and\[a_{i}a_{i+1} + 1 = a_{i+2}\]for $i = 1, 2, ..., n.$
Let sequence $\{x_n\}$ satisfy the relation $x_{n+2}=x_{n+1}+2x_n$ for $n\ge 1$ where $x_1=1$ and $x_2=3$.
Let sequence $\{y_n\}$ satisfy the relation $y_{n+2}=2y_{n+1}+3y_n$ for $n\ge 1$ where $y_1=7$ and $y_2=17$.
Show that these two sequences do not share any common term.
Let $a$, $b$, and $x_0$ all be positive integers. Sequence $\{x_n\}$ is defined as $x_{n+1}=ax_n + b$ where $n \ge 1$. Show that $x_1$, $x_2$, $\cdots$ cannot be all prime.
Solve the recursion $$a_n=\sum^{n-1}_{k=0}a_{k}a_{n-k-1}=a_0a_{n-1}+a_1a_{n-2}+\cdots+a_{n-1}a_0$$
where $a_0=a_1=1$.
Compute the limit of the power series below as a rational function in $x$:
$$1\cdot 2 + (2\cdot 3)x + (3\cdot 4)x^2 + (4\cdot 5)x^3 + (5\cdot 6)x^4+\cdots,\qquad (|x| < 1)$$
Compute $$1-\frac{1\times 2}{2}+\frac{2\times 3}{2^2}-\frac{3\times 4}{2^3}+\frac{4\times 5}{2^4}-\cdots$$