Practice (TheColoringMethod)

back to index  |  new

810
Suppose that $\sin a + \sin b = \sqrt{\frac{5}{3}}$ and $\cos a + \cos b = 1$. What is $\cos (a - b)$?

811
The polynomial $f(x) = x^{4} + ax^{3} + bx^{2} + cx + d$ has real coefficients, and $f(2i) = f(2 + i) = 0.$ What is $a + b + c + d?$

812
Triangles $ABC$ and $ADE$ have areas $2007$ and $7002,$ respectively, with $B = (0,0),$ $C = (223,0),$ $D = (680,380),$ and $E = (689,389).$ What is the sum of all possible x-coordinates of $A$?

813
Corners are sliced off a unit cube so that the six faces each become regular octagons. What is the total volume of the removed tetrahedra?

814
The sum of the zeros, the product of the zeros, and the sum of the coefficients of the function $\displaystyle f(x)=ax^{2}+bx+c$ are equal. Their common value must also be which of the following?

816
Square $ABCD$ has area $36,$ and $\overline{AB}$ is parallel to the x-axis. Vertices $A,$ $B$, and $C$ are on the graphs of $y = \log_{a}x,$ $y = 2\log_{a}x,$ and $y = 3\log_{a}x,$ respectively. What is $a?$

817
For each integer $n>1$, let $F(n)$ be the number of solutions to the equation $\sin{x}=\sin{(nx)}$ on the interval $[0,\pi]$. What is $\displaystyle\sum_{n=2}^{2007} F(n)$?

818
Call a set of integers spacy if it contains no more than one out of any three consecutive integers. How many subsets of $\{1,2,3,\ldots,12\},$ including the empty set, are spacy?

821
The point $O$ is the center of the circle circumscribed about triangle $ABC$, with $\angle BOC = 120^{\circ}$ and $\angle AOB = 140^{\circ}$, as shown. What is the degree measure of $\angle ABC$?


822
At Frank's Fruit Market, 3 bananas cost as much as 2 apples, and 6 apples cost as much as 4 oranges. How many oranges cost as much as 18 bananas?

823
The 2007 AMC 12 contests will be scored by awarding 6 points for each correct response, 0 points for each incorrect response, and 1.5 points for each problem left unanswered. After looking over the 25 problems, Sarah has decided to attempt the first 22 and leave the last 3 unanswered. How many of the first 22 problems must she solve correctly in order to score at least 100 points?

824
Triangle $ABC$ has side lengths $AB = 5$, $BC = 6$, and $AC = 7$. Two bugs start simultaneously from $A$ and crawl along the sides of the triangle in opposite directions at the same speed. They meet at point $D$. What is $BD$?

825
All sides of the convex pentagon $ABCDE$ are of equal length, and $\angle A = \angle B = 90^{\circ}$. What is the degree measure of $\angle E$?

827
A function $f$ has the property that $f(3x-1)=x^2+x+1$ for all real numbers $x$. What is $f(5)$?

831
A traffic light runs repeatedly through the following cycle: green for $30$ seconds, then yellow for $3$ seconds, and then red for $30$ seconds. Leah picks a random three-second time interval to watch the light. What is the probability that the color changes while she is watching?

833
The geometric series $a+ar+ar^2\ldots$ has a sum of $7$, and the terms involving odd powers of $r$ have a sum of $3$. What is $a+r$?

834
Each face of a regular tetrahedron is painted either red, white, or blue. Two colorings are considered indistinguishable if two congruent tetrahedra with those colorings can be rotated so that their appearances are identical. How many distinguishable colorings are possible?

835
If $a$ is a nonzero integer and $b$ is a positive number such that $ab^2=\log_{10}b$, what is the median of the set $\{0,1,a,b,1\/b\}$?

836
Let $a$, $b$, and $c$ be digits with $a\ne 0$. The three-digit integer $abc$ lies one third of the way from the square of a positive integer to the square of the next larger integer. The integer $acb$ lies two thirds of the way between the same two squares. What is $a+b+c$?

837
Rhombus $ABCD$, with side length $6$, is rolled to form a cylinder of volume $6$ by taping $\overline{AB}$ to $\overline{DC}$. What is $\sin(\angle ABC)$?

838
The parallelogram bounded by the lines $y=ax+c$, $y=ax+d$, $y=bx+c$, and $y=bx+d$ has area $18$. The parallelogram bounded by the lines $y=ax+c$, $y=ax-d$, $y=bx+c$, and $y=bx-d$ has area $72$. Given that $a$, $b$, $c$, and $d$ are positive integers, what is the smallest possible value of $a+b+c+d$?

839
The first $2007$ positive integers are each written in base $3$. How many of these base-$3$ representations are palindromes? (A palindrome is a number that reads the same forward and backward.)

840
Two particles move along the edges of equilateral $\triangle ABC$ in the direction \[A\Rightarrow B\Rightarrow C\Rightarrow A,\] starting simultaneously and moving at the same speed. One starts at $A$, and the other starts at the midpoint of $\overline{BC}$. The midpoint of the line segment joining the two particles traces out a path that encloses a region $R$. What is the ratio of the area of $R$ to the area of $\triangle ABC$?

841
How many non-congruent right triangles with positive integer leg lengths have areas that are numerically equal to $3$ times their perimeters?

842
How many pairs of positive integers $(a,b)$ are there such that $\gcd(a,b)=1$ and \[\frac{a}{b}+\frac{14b}{9a}\] is an integer?