Practice (TheColoringMethod)

back to index  |  new

Let $\{x_n\}$ and $\{y_n\}$ be two real number sequences which are defined as follow: $$x_1=y_1=\sqrt{3},\quad x_{n+1}=x_n +\sqrt{1+x_n^2},\quad y_{n+1}=\frac{y_n}{1+\sqrt{1+y_n^2}}$$ for all $n\ge 1$. Prove that $2 < x_ny_n < 3$ for all $n>1$.

Let $m$ be a positive integer. Show that $$\frac{1}{\sqrt{m+1}}< \sin\frac{1}{\sqrt{m}}$$

Let $x\in(0, \pi/2)$ be expressed in radian. Explain why the relation $\sin x < x < \tan x$ hold?

Let $m$ be a positive integer. Show that $$\sin\frac{2}{\sqrt{m}}< \frac{2}{\sqrt{m+1}}$$

Prove $$\frac{1}{\sqrt{2019}} < \underbrace{\sin\sin\sin\cdots\sin}_{2017}\frac{\sqrt{2}}{2} < \frac{2}{\sqrt{2019}}$$

Solve this equation $$2\sqrt{2}x^2 + x -\sqrt{1-x ^2}-\sqrt{2}=0$$

If $\triangle{ABC}$ is not a right triangle, show \begin{equation} \tan A + \tan B + \tan C =\tan A \tan B \tan C \end{equation}

In $\triangle{ABC}$, show that $$\cot A\cot B +\cot B\cot C + \cot C\cot A = 1$$

Given $\triangle{ABC}$, show that $$\cos A + \cos B + \cos C =1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$$

Let $\theta\in[0, 2\pi]$ satisfying $$\cos^5\theta -\sin^5\theta < 7(\sin^3\theta -\cos^3\theta)$$ Find the range of $\theta$.

In $\triangle{ABC}$, show that \begin{align*} \sin 2A + \sin 2B + \sin 2C &= 4\sin A\sin B \sin C\\ \cos 2A + \cos 2B + \cos 2C &= -1-4\cos A\cos B\cos C \end{align*}

In $\triangle{ABC}$, show that \begin{align*} &\sin^2A +\sin^2B+\sin^2C = 2 +2\cos A\cos B \cos C\\ &\cos^2A +\cos^2B + \cos^2C = 1-2\cos A\cos B\cos C \end{align*}

Compute the values of $$S=C_n^1\sin\theta + C_n^2\sin 2\theta + \cdots + C_n^n\sin n\theta$$ and $$C=C_n^1\cos\theta + C_n^2\cos 2\theta + \cdots + C_n^n\cos n\theta$$

$$|\sin x + \cos x + \tan x + \cot x + \sec x + \csc x|$$ where $x$ is a real number.

Let $a$ and $b$ be two positive real numbers not exceeding $1$. Prove $$\frac{1}{\sqrt{a^2 + 1}}+\frac{1}{\sqrt{b^2 +1}}\le\frac{2}{\sqrt{1+ab}}$$

Solve this inequality $$\frac{x}{\sqrt{x^2 +1}}+\frac{1-x^2}{1+x^2} > 0$$

Compute $\sin 15^\circ$ and $\cos 15^\circ$ using a geometry approach.

Find the range of real number $a$ if the following equation of $x$ is solvable in real number: $$\sin^2 x + \cos x + a=0$$

Find the number of solutions to the equation $\sin x = \frac{x}{2018}$.

Prove that function $f(x)=\cos\sqrt{x}$ is not a periodical function.

Sort $\sin(-1)$, $\cos(-1)$, and $\tan(-1)$ in an ascending order.

Prove the following identity \begin{equation} \tan\alpha + \tan(90^\circ - \alpha)=\frac{2}{\sin 2\alpha} \end{equation}

Compute the value of $(\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ)$.

Compute $\sin 25^\circ \sin 35^\circ \sin 85^\circ$.

Prove $\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ=3$.