Practice (EndingDigits,TheDivideByNineMethod,MODBasic)

back to index  |  new

95

On square $ABCD$, points $E,F,G$, and $H$ lie on sides $\overline{AB},\overline{BC},\overline{CD},$ and $\overline{DA},$ respectively, so that $\overline{EG} \perp \overline{FH}$ and $EG=FH = 34$. Segments $\overline{EG}$ and $\overline{FH}$ intersect at a point $P$, and the areas of the quadrilaterals $AEPH, BFPE, CGPF,$ and $DHPG$ are in the ratio $269:275:405:411.$ Find the area of square $ABCD$.



96
Let $m$ be the largest real solution to the equation$$\frac{3}{x-3}+\frac{5}{x-5}+\frac{17}{x-17}+\frac{19}{x-19}=x^2-11x-4$$There are positive integers $a$, $b$, and $c$ such that $m=a+\sqrt{b+\sqrt{c}}$. Find $a+b+c$.

97
In $\triangle ABC$, $AB = 3$, $BC = 4$, and $CA = 5$. Circle $\omega$ intersects $\overline{AB}$ at $E$ and $B$, $\overline{BC}$ at $B$ and $D$, and $overline{AC}$ at $F$ and $G$. Given that $EF=DF$ and $\frac{DG}{EG} = \frac{3}{4}$, length $DE=\frac{a\sqrt{b}}{c}$, where $a$ and $c$ are relatively prime positive integers, and $b$ is a positive integer not divisible by the square of any prime. Find $a+b+c$.

98
Abe can paint the room in 15 hours, Bea can paint 50 percent faster than Abe, and Coe can paint twice as fast as Abe. Abe begins to paint the room and works alone for the first hour and a half. Then Bea joins Abe, and they work together until half the room is painted. Then Coe joins Abe and Bea, and they work together until the entire room is painted. Find the number of minutes after Abe begins for the three of them to finish painting the room.

99

Arnold is studying the prevalence of three health risk factors, denoted by $A$, $B$, and $C$, within a population of men. For each of the three factors, the probability that a randomly selected man in the population has only this risk factor (and none of the others) is $0.1$. For any two of the three factors, the probability that a randomly selected man has exactly these two risk factors (but not the third) is $0.14$. The probability that a randomly selected man has all three risk factors, given that he has $A$ and $B$ is $\frac{1}{3}$. Find the probability that a man has none of the three risk factors given that he does not have risk factor $A$.


100

A rectangle has sides of length $a$ and 36. A hinge is installed at each vertex of the rectangle, and at the midpoint of each side of length 36. The sides of length $a$ can be pressed toward each other keeping those two sides parallel so the rectangle becomes a convex hexagon as shown. When the figure is a hexagon with the sides of length $a$ parallel and separated by a distance of 24, the hexagon has the same area as the original rectangle. Find $a^2$.



101
The repeating decimals $0.abab\overline{ab}$ and $0.abcabc\overline{abc}$ satisfy \[0.abab\overline{ab}+0.abcabc\overline{abc}=\frac{33}{37},\] where $a$, $b$, and $c$ are (not necessarily distinct) digits. Find the three digit number $abc$.

102
Real numbers $r$ and $s$ are roots of $p(x)=x^3+ax+b$, and $r+4$ and $(s-3)$ are roots of $q(x)=x^3+ax+b+240$. Find the sum of all possible values of $|b|$.

103
Charles has two six-sided die. One of the die is fair, and the other die is biased so that it comes up six with probability $\frac{2}{3}$ and each of the other five sides has probability $\frac{1}{15}$. Charles chooses one of the two dice at random and rolls it three times. Given that the first two rolls are both sixes, find the probability that the third roll will also be a six.

104
Let $f(x)=(x^2+3x+2)^{cos(\pi x)}$. Find the sum of all positive integers $n$ for which \[\left |\sum_{k=1}^nlog_{10}f(k)\right|=1.\]

105
Circle $C$ with radius 2 has diameter $\overline{AB}$. Circle D is internally tangent to circle $C$ at $A$. Circle $E$ is internally tangent to circle $C$, externally tangent to circle $D$, and tangent to $\overline{AB}$. The radius of circle $D$ is three times the radius of circle $E$, and can be written in the form $\sqrt{m}-n$, where $m$ and $n$ are positive integers. Find $m+n$.

106
Ten chairs are arranged in a circle. Find the number of subsets of this set of chairs that contain at least three adjacent chairs.

107
Let $z$ be a complex number with $|z|=2014$. Let $P$ be the polygon in the complex plane whose vertices are $z$ and every $w$ such that $\frac{1}{z+w}=\frac{1}{z}+\frac{1}{w}$. Then the area enclosed by $P$ can be written in the form $n\sqrt{3}$, where $n$ is an integer. Find the remainder when $n$ is divided by $1000$.

108
In $\triangle RED$, $\angle DRE=75^{\circ}$ and $\angle RED=45^{\circ}$. $|RD|=1$. Let $M$ be the midpoint of segment $\overline{RD}$. Point $C$ lies on side $\overline{ED}$ such that $\overline{RC}\perp\overline{EM}$. Extend segment $\overline{DE}$ through $E$ to point $A$ such that $CA=AR$. Then $AE=\frac{a-\sqrt{b}}{c}$, where $a$ and $c$ are relatively prime positive integers, and $b$ is a positive integer. Find $a+b+c$.

109
Suppose that the angles of $\triangle ABC$ satisfy $cos(3A)+cos(3B)+cos(3C)=1.$ Two sides of the triangle have lengths $10$ and $13$. There is a positive integer $m$ so that the maximum possible length for the remaining side of $\triangle ABC$ is $\sqrt{m}$. Find $m$.

110
Ten adults enter a room, remove their shoes, and toss their shoes into a pile. Later, a child randomly pairs each left shoe with a right shoe without regard to which shoes belong together. The probability that for every positive integer $k<5$, no collection of $k$ pairs made by the child contains the shoes from exactly $k$ of the adults is $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n.$

111
In $\triangle{ABC}, AB=10, \angle{A}=30^{\circ}$, and $\angle{C=45^{\circ}}$. Let $H, D,$ and $M$ be points on the line $BC$ such that $AH\perp{BC}$, $\angle{BAD}=\angle{CAD}$, and $BM=CM$. Point $N$ is the midpoint of the segment $HM$, and point $P$ is on ray $AD$ such that $PN\perp{BC}$. Then $AP^2=\dfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

112
For any integer $k\geq 1$, let $p(k)$ be the smallest prime which does not divide $k.$ Define the integer function $X(k)$ to be the product of all primes less than $p(k)$ if $p(k)>2$, and $X(k)=1$ if $p(k)=2.$ Let ${x_n}$ be the sequence defined by $x_0=1$, and $x_{n+1}X(x_n)=x_np(x_n)$ for $n\geq 0.$ Find the smallest positive integer $t$ such that $x_t=2090.$

120
Let $f(x) = x^4 + ax^3 + bx^2 + cx + d$. If $f(-1) = -1$, $f(2)=-4$, $f(-3) = -9$, and $f(4) = -16$. Find $f(1)$.

121
Show that, if $a,b$ are positive integers satisfying $4(ab-1)\mid (4a^2-1)$, then $a=b$

122
Let $a > b > c$ be three positive integers. If their remainders are $2$, $7$, and $9$ respectively when being divided by $11$. Find the remainder when $(a+b+c)(a-b)(b-c)$ is divided by $11$.

123
Find all positive integer $n$ such that $2^n+1$ is divisible by 3.

125

Show that $2x^2 - 5y^2 = 7$ has no integer solution.


155
How many ordered pairs of positive integers $(x, y)$ can satisfy the equation $x^2 + y^2 = x^3$?

156
Solve in positive integers $x^2 - 4xy + 5y^2 = 169$.