Practice (EndingDigits,TheDivideByNineMethod,MODBasic)

back to index  |  new

For each positive integer $n$, the Bank of Cape Town issues coins of denomination $\frac1n$. Given a finite collection of such coins (of not necessarily different denominations) with total value at most most $99+\frac12$, prove that it is possible to split this collection into $100$ or fewer groups, such that each group has total value at most $1$.

A set of lines in the plane is in general position if no two are parallel and no three pass through the same point. A set of lines in general position cuts the plane into regions, some of which have finite area; we call these its finite regions. Prove that for all sufficiently large $n$, in any set of $n$ lines in general position it is possible to colour at least $\sqrt{n}$ lines blue in such a way that none of its finite regions has a completely blue boundary. Note: Results with $\sqrt{n}$ replaced by $c\sqrt{n}$ will be awarded points depending on the value of the constant $c$.

Assume that $k$ and $n$ are two positive integers. Prove that there exist positive integers $m_1 , \dots , m_k$ such that \[1+\frac{2^k-1}{n}=\left(1+\frac1{m_1}\right)\cdots \left(1+\frac1{m_k}\right).\]Proposed by Japan

A configuration of $4027$ points in the plane is called Colombian if it consists of $2013$ red points and $2014$ blue points, and no three of the points of the configuration are collinear. By drawing some lines, the plane is divided into several regions. An arrangement of lines is good for a Colombian configuration if the following two conditions are satisfied: i) No line passes through any point of the configuration. ii) No region contains points of both colors. Find the least value of $k$ such that for any Colombian configuration of $4027$ points, there is a good arrangement of $k$ lines. Proposed by Ivan Guo from Australia.

Let the excircle of triangle $ABC$ opposite the vertex $A$ be tangent to the side $BC$ at the point $A_1$. Define the points $B_1$ on $CA$ and $C_1$ on $AB$ analogously, using the excircles opposite $B$ and $C$, respectively. Suppose that the circumcentre of triangle $A_1B_1C_1$ lies on the circumcircle of triangle $ABC$. Prove that triangle $ABC$ is right-angled. Proposed by Alexander A. Polyansky, Russia

Let $ABC$ be an acute triangle with orthocenter $H$, and let $W$ be a point on the side $BC$, lying strictly between $B$ and $C$. The points $M$ and $N$ are the feet of the altitudes from $B$ and $C$, respectively. Denote by $\omega_1$ is the circumcircle of $BWN$, and let $X$ be the point on $\omega_1$ such that $WX$ is a diameter of $\omega_1$. Analogously, denote by $\omega_2$ the circumcircle of triangle $CWM$, and let $Y$ be the point such that $WY$ is a diameter of $\omega_2$. Prove that $X,Y$ and $H$ are collinear. Proposed by Warut Suksompong and Potcharapol Suteparuk, Thailand

Let $\mathbb Q_{>0}$ be the set of all positive rational numbers. Let $f:\mathbb Q_{>0}\to\mathbb R$ be a function satisfying the following three conditions: (i) for all $x,y\in\mathbb Q_{>0}$, we have $f(x)f(y)\geq f(xy)$; (ii) for all $x,y\in\mathbb Q_{>0}$, we have $f(x+y)\geq f(x)+f(y)$; (iii) there exists a rational number $a>1$ such that $f(a)=a$. Prove that $f(x)=x$ for all $x\in\mathbb Q_{>0}$. Proposed by Bulgaria

Let $n \ge 3$ be an integer, and consider a circle with $n + 1$ equally spaced points marked on it. Consider all labellings of these points with the numbers $0, 1, ... , n$ such that each label is used exactly once; two such labellings are considered to be the same if one can be obtained from the other by a rotation of the circle. A labelling is called beautiful if, for any four labels $a < b < c < d$ with $a + d = b + c$, the chord joining the points labelled $a$ and $d$ does not intersect the chord joining the points labelled $b$ and $c$. Let $M$ be the number of beautiful labelings, and let N be the number of ordered pairs $(x, y)$ of positive integers such that $x + y \le n$ and $\gcd(x, y) = 1$. Prove that $$M = N + 1.$$

Given triangle $ABC$ the point $J$ is the centre of the excircle opposite the vertex $A.$ This excircle is tangent to the side $BC$ at $M$, and to the lines $AB$ and $AC$ at $K$ and $L$, respectively. The lines $LM$ and $BJ$ meet at $F$, and the lines $KM$ and $CJ$ meet at $G.$ Let $S$ be the point of intersection of the lines $AF$ and $BC$, and let $T$ be the point of intersection of the lines $AG$ and $BC.$ Prove that $M$ is the midpoint of $ST.$ (The excircle of $ABC$ opposite the vertex $A$ is the circle that is tangent to the line segment $BC$, to the ray $AB$ beyond $B$, and to the ray $AC$ beyond $C$.) Proposed by Evangelos Psychas, Greece

Let $n\ge 3$ be an integer, and let $a_2,a_3,\ldots ,a_n$ be positive real numbers such that $a_{2}a_{3}\cdots a_{n}=1$. Prove that \[(1 + a_2)^2 (1 + a_3)^3 \dotsm (1 + a_n)^n > n^n.\] Proposed by Angelo Di Pasquale, Australia

The liar's guessing game is a game played between two players $A$ and $B$. The rules of the game depend on two positive integers $k$ and $n$ which are known to both players. At the start of the game $A$ chooses integers $x$ and $N$ with $1 \le x \le N.$ Player $A$ keeps $x$ secret, and truthfully tells $N$ to player $B$. Player $B$ now tries to obtain information about $x$ by asking player $A$ questions as follows: each question consists of $B$ specifying an arbitrary set $S$ of positive integers (possibly one specified in some previous question), and asking $A$ whether $x$ belongs to $S$. Player $B$ may ask as many questions as he wishes. After each question, player $A$ must immediately answer it with yes or no, but is allowed to lie as many times as she wants; the only restriction is that, among any $k+1$ consecutive answers, at least one answer must be truthful. After $B$ has asked as many questions as he wants, he must specify a set $X$ of at most $n$ positive integers. If $x$ belongs to $X$, then $B$ wins; otherwise, he loses. Prove that: 1. If $n \ge 2^k,$ then $B$ can guarantee a win. 2. For all sufficiently large $k$, there exists an integer $n \ge (1.99)^k$ such that $B$ cannot guarantee a win. Proposed by David Arthur, Canada

Find all functions $f:\mathbb Z\rightarrow \mathbb Z$ such that, for all integers $a,b,c$ that satisfy $a+b+c=0$, the following equality holds: \[f(a)^2+f(b)^2+f(c)^2=2f(a)f(b)+2f(b)f(c)+2f(c)f(a).\] (Here $\mathbb{Z}$ denotes the set of integers.) Proposed by Liam Baker, South Africa

Let $ABC$ be a triangle with $\angle BCA=90^{\circ}$, and let $D$ be the foot of the altitude from $C$. Let $X$ be a point in the interior of the segment $CD$. Let $K$ be the point on the segment $AX$ such that $BK=BC$. Similarly, let $L$ be the point on the segment $BX$ such that $AL=AC$. Let $M$ be the point of intersection of $AL$ and $BK$. Show that $MK=ML$. Proposed by Josef Tkadlec, Czech Republic

Find all positive integers $n$ for which there exist non-negative integers $a_1, a_2, \ldots, a_n$ such that \[ \frac{1}{2^{a_1}} + \frac{1}{2^{a_2}} + \cdots + \frac{1}{2^{a_n}} = \frac{1}{3^{a_1}} + \frac{2}{3^{a_2}} + \cdots + \frac{n}{3^{a_n}} = 1. \] Proposed by Dusan Djukic, Serbia

Let $X_1, X_2, \ldots, X_{100}$ be a sequence of mutually distinct nonempty subsets of a set $S$. Any two sets $X_i$ and $X_{i+1}$ are disjoint and their union is not the whole set $S$, that is, $X_i\cap X_{i+1}=\emptyset$ and $X_i\cup X_{i+1}\neq S$, for all $i\in\{1, \ldots, 99\}$. Find the smallest possible number of elements in $S$.

Prove that for any positive integer $k$, \[(k^2)!\cdot\displaystyle\prod_{j=0}^{k-1}\frac{j!}{(j+k)!}\]is an integer.

Let $\triangle ABC$ be an acute triangle, and let $I_B, I_C,$ and $O$ denote its $B$-excenter, $C$-excenter, and circumcenter, respectively. Points $E$ and $Y$ are selected on $\overline{AC}$ such that $\angle ABY=\angle CBY$ and $\overline{BE}\perp\overline{AC}$. Similarly, points $F$ and $Z$ are selected on $\overline{AB}$ such that $\angle ACZ=\angle BCZ$ and $\overline{CF}\perp\overline{AB}$. Lines $\overleftrightarrow{I_BF}$ and $\overleftrightarrow{I_CE}$ meet at $P$. Prove that $\overline{PO}$ and $\overline{YZ}$ are perpendicular. Proposed by Evan Chen and Telv Cohl

Find all functions $f:\mathbb{R}\rightarrow \mathbb{R}$ such that for all real numbers $x$ and $y$, $$(f(x)+xy)\cdot f(x-3y)+(f(y)+xy)\cdot f(3x-y)=(f(x+y))^2.$$

An equilateral pentagon $AMNPQ$ is inscribed in triangle $ABC$ such that $M\in\overline{AB}$, $Q\in\overline{AC}$, and $N,P\in\overline{BC}$. Let $S$ be the intersection of $\overleftrightarrow{MN}$ and $\overleftrightarrow{PQ}$. Denote by $\ell$ the angle bisector of $\angle MSQ$. Prove that $\overline{OI}$ is parallel to $\ell$, where $O$ is the circumcenter of triangle $ABC$, and $I$ is the incenter of triangle $ABC$.

Integers $n$ and $k$ are given, with $n\ge k\ge2$. You play the following game against an evil wizard. The wizard has $2n$ cards; for each $i=1,\ldots,n$, there are two cards labeled $i$. Initially, the wizard places all cards face down in a row, in unknown order. You may repeatedly make moves of the following form: you point to any $k$ of the cards. The wizard then turns those cards face up. If any two of the cards match, the game is over and you win. Otherwise, you must look away, while the wizard arbitrarily permutes the $k$ chosen cards and then turns them back face-down. Then, it is your turn again. We say this game is winnable if there exist some positive integer $m$ and some strategy that is guaranteed to win in at most $m$ moves, no matter how the wizard responds. For which values of $n$ and $k$ is the game winnable?

Let $a$, $b$, $c$, $d$ be real numbers such that $b-d \ge 5$ and all zeros $x_1, x_2, x_3,$ and $x_4$ of the polynomial $P(x)=x^4+ax^3+bx^2+cx+d$ are real. Find the smallest value the product $(x_1^2+1)(x_2^2+1)(x_3^2+1)(x_4^2+1)$ can take.

Let $\mathbb{Z}$ be the set of integers. Find all functions $f : \mathbb{Z} \rightarrow \mathbb{Z}$ such that \[xf(2f(y)-x)+y^2f(2x-f(y))=\frac{f(x)^2}{x}+f(yf(y))\] for all $x, y \in \mathbb{Z}$ with $x \neq 0$.

Prove that there exists an infinite set of points \[ \dots, \; P_{-3}, \; P_{-2},\; P_{-1},\; P_0,\; P_1,\; P_2,\; P_3,\; \dots \] in the plane with the following property: For any three distinct integers $a,b,$ and $c$, points $P_a$, $P_b$, and $P_c$ are collinear if and only if $a+b+c=2014$.

Let $k$ be a positive integer. Two players $A$ and $B$ play a game on an infinite grid of regular hexagons. Initially all the grid cells are empty. Then the players alternately take turns with $A$ moving first. In his move, $A$ may choose two adjacent hexagons in the grid which are empty and place a counter in both of them. In his move, $B$ may choose any counter on the board and remove it. If at any time there are $k$ consecutive grid cells in a line all of which contain a counter, $A$ wins. Find the minimum value of $k$ for which $A$ cannot win in a finite number of moves, or prove that no such minimum value exists.

Let $ABC$ be a triangle with orthocenter $H$ and let $P$ be the second intersection of the circumcircle of triangle $AHC$ with the internal bisector of the angle $\angle BAC$. Let $X$ be the circumcenter of triangle $APB$ and $Y$ the orthocenter of triangle $APC$. Prove that the length of segment $XY$ is equal to the circumradius of triangle $ABC$.