USAMO
2016


Problem - 3411
Let $\triangle ABC$ be an acute triangle, and let $I_B, I_C,$ and $O$ denote its $B$-excenter, $C$-excenter, and circumcenter, respectively. Points $E$ and $Y$ are selected on $\overline{AC}$ such that $\angle ABY=\angle CBY$ and $\overline{BE}\perp\overline{AC}$. Similarly, points $F$ and $Z$ are selected on $\overline{AB}$ such that $\angle ACZ=\angle BCZ$ and $\overline{CF}\perp\overline{AB}$. Lines $\overleftrightarrow{I_BF}$ and $\overleftrightarrow{I_CE}$ meet at $P$. Prove that $\overline{PO}$ and $\overline{YZ}$ are perpendicular. Proposed by Evan Chen and Telv Cohl

report an error