Function AMC10/12
2006


Problem - 861
The function $\displaystyle f$ has the property that for each real number $\displaystyle x$ in its domain, $\displaystyle 1\/x$ is also in its domain and $f(x)+f\left(\frac{1}{x}\right)=x$ What is the largest set of real numbers that can be in the domain of $f$?

report an error