InfiniteSeries Integral Intermediate

Problem - 4561

Let $$S_n=\sum_{k=1}^{2n}\frac{1}{n+k}=\frac{1}{n+1}+\frac{1}{n+2}+\cdots + \frac{1}{3n}$$

Does $\displaystyle\lim_{n\to\infty}S_n$ exist? If so, find its value. If not, prove the claim.


The solution for this problem is available for $0.99. You can also purchase a pass for all available solutions for $99.

report an error