Recursive (Counting) Difficult

Problem - 4476

Given two distinct values $b_1$ and $b_2$, their product can be written in two ways: $b_1\times b_2$ and $b_2\times b_1$. Given three distinct values $b_1$, $b_2$, and $b_3$, their products can be expressed in $12$ ways: $b_1\times(b_2\times b_3)$, $(b_1\times b_2)\times b_3$, $b_1\times(b_3\times b_2)$, $(b_1\times b_3)\times b_2$, $b_2\times(b_3\times b_1)$, $(b_2\times b_3)\times b_1$, $b_2\times(b_1\times b_3)$, $(b_2\times b_1)\times b_3$, $b_3\times(b_1\times b_2)$, $(b_3\times b_1)\times b_2$, $b_3\times(b_2\times b_1)$, and $(b_3\times b_2)\times b_1$. Please note that in this definition, orders matter and parentheses etc cannot be simplified. The question is how many different ways to express the product of $n$ distinct values?


report an error