AMC10/12
2019


Problem - 4451

Define a sequence recursively by $x_0=5$ and $$x_{n+1}=\frac{x_n^2+5x_n+4}{x_n+6}$$

for all nonnegative integers $n$. Let $m$ be the least positive integer such that $$x_m\le 4+\frac{1}{2^{20}}$$

In which of the following intervals does $m$ lie?

$\textbf{(A) } [9,26] \qquad\textbf{(B) } [27,80] \qquad\textbf{(C) } [81,242]\qquad\textbf{(D) } [243,728] \qquad\textbf{(E) } [729,\infty]$


report an error