AMC10/12
2019


Problem - 4436

The function $\mathcal{f}$ is defined by $$f(x) = \lfloor|x|\rfloor - |\lfloor x \rfloor|$$ for all real numbers $x$, where $\lfloor r \rfloor$ denotes the greatest integer less than or equal to the real number "$r$ . What is the range of $\mathcal{f}$?


report an error