Bijection Difficult

Problem - 4365

Assuming positive integer $n$ satisfies $n\equiv 1\pmod{4}$ and $n > 1$. Let $\mathbb{P}=\{a_1,\ a_2,\ \cdots,\ a_n\}$ be a permutation of $\{1,\ 2,\ \cdots,\ n\}$. If $k_p$ denotes the largest index $k$ associated with $\mathbb{P}$ such that the following inequality holds $$a_1 + a_2 + \cdots + a_k < a_{k+1}+a_{k+2}+\cdots + a_n$$

Find the sum of $k_p$ for all possible $\mathbb{P}$.


The solution for this problem is available for $0.99. You can also purchase a pass for all available solutions for $99.

report an error