Sequence
IMO
2017
For each integer $a_0 >$ 1, define the sequence $a_0, a_1, a_2, \cdots$ by:
$$
a_{n+1} =
\left\{
\begin{array}{ll}
\sqrt{a_n} & \text{if } \sqrt{a_n} \text{ is an integer}\\
a_n + 3 & \text{otherwise}
\end{array}
\right.
$$
For all $n \ge 0$. Determine all values of $a_0$ for which there is a number $A$ such that $a_n = A$ for infinitely many values of $n$.