USAMO
2002
Let $S$ be a set with 2002 elements, and let $N$ be an integer with $0 \leq N \leq 2^{2002}$. Prove that it is possible to color every subset of $S$ either black or white so that the following conditions hold:
(a) the union of any two white subsets is white;
(b) the union of any two black subsets is black;
(c) there are exactly $N$ white subsets.