USAMO
1995


Problem - 3563
Suppose $\, q_{0}, \, q_{1}, \, q_{2}, \ldots \; \,$ is an infinite sequence of integers satisfying the following two conditions: (i) $\, m-n \,$ divides $\, q_{m}-q_{n}\,$ for $\, m > n \geq 0,$ (ii) there is a polynomial $\, P \,$ such that $\, |q_{n}| < P(n) \,$ for all $\, n$ Prove that there is a polynomial $\, Q \,$ such that $\, q_{n}= Q(n) \,$ for all $\, n$.

report an error