USAMO
1995
A calculator is broken so that the only keys that still work are the $ \sin$, $ \cos$, and $ \tan$ buttons, and their inverses (the $ \arcsin$, $ \arccos$, and $ \arctan$ buttons). The display initially shows $ 0$. Given any positive rational number $ q$, show that pressing some finite sequence of buttons will yield the number $ q$ on the display. Assume that the calculator does real number calculations with infinite precision. All functions are in terms of radians.