USAMO
1994


Problem - 3559
Let $\, |U|, \, \sigma(U) \,$ and $\, \pi(U) \,$ denote the number of elements, the sum, and the product, respectively, of a finite set $\, U \,$ of positive integers. (If $\, U \,$ is the empty set, $\, |U| = 0, \, \sigma(U) = 0, \, \pi(U) = 1$.) Let $\, S \,$ be a finite set of positive integers. As usual, let $\, \binom{n}{k} \,$ denote $\, n! \over k! \, (n-k)!$. Prove that \[ \sum_{U \subseteq S} (-1)^{|U|} \binom{m - \sigma(U)}{|S|} = \pi(S) \] for all integers $\, m \geq \sigma(S)$.

report an error