USAMO
1994


Problem - 3558
Let $\, a_1, a_2, a_3, \ldots \,$ be a sequence of positive real numbers satisfying $\, \sum_{j=1}^n a_j \geq \sqrt{n} \,$ for all $\, n \geq 1$. Prove that, for all $\, n \geq 1, \,$ \[ \sum_{j=1}^n a_j^2 > \frac{1}{4} \left( 1 + \frac{1}{2} + \cdots + \frac{1}{n} \right). \]

report an error