USAMO
1993


Problem - 3552
Consider functions $\, f: [0,1] \rightarrow \mathbb{R} \,$ which satisfy (i) $f(x) \geq 0 \,$ for all $\, x \,$ in $\, [0,1],$ (ii) $f(1) = 1,$ (iii) $f(x) + f(y) \leq f(x+y)\,$ whenever $\, x, \, y, \,$ and $\, x + y \,$ are all in $\, [0,1]$. Find, with proof, the smallest constant $\, c \,$ such that \[ f(x) \leq cx \]for every function $\, f \,$ satisfying (i)-(iii) and every $\, x \,$ in $\, [0,1]$.

report an error