USAMO
1989
For each positive integer $n$, let
\begin{eqnarray*} S_n &=& 1 + \frac 12 + \frac 13 + \cdots + \frac 1n, \\ T_n &=& S_1 + S_2 + S_3 + \cdots + S_n, \\ U_n &=& \frac{T_1}{2} + \frac{T_2}{3} + \frac{T_3}{4} + \cdots + \frac{T_n}{n+1}. \end{eqnarray*} Find, with proof, integers $0 < a, b,c, d < 1000000$ such that $T_{1988} = a S_{1989} - b$ and $U_{1988} = c S_{1989} - d$.