USAMO
1978


Problem - 3477
An integer $n$ will be called good if we can write \[n=a_1+a_2+\cdots+a_k,\] where $a_1,a_2, \ldots, a_k$ are positive integers (not necessarily distinct) satisfying \[\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}=1.\] Given the information that the integers 33 through 73 are good, prove that every integer $\ge 33$ is good.

report an error