USAMO
1972


Problem - 3445
The symbols $ (a,b,\ldots,g)$ and $ [a,b,\ldots,g]$ denote the greatest common divisor and least common multiple, respectively, of the positive integers $ a,b,\ldots,g$. For example, $ (3,6,18)=3$ and $ [6,15]=30$. Prove that \[ \frac{[a,b,c]^2}{[a,b][b,c][c,a]}=\frac{(a,b,c)^2}{(a,b)(b,c)(c,a)}.\]

report an error