SpecialValueMethod
VietaTheorem
Let $n$ be a positive integer, and for $1\le k\le n$, let $S_k$ be the sum of the products of $1, \frac{1}{2}, \cdots, \frac{1}{n}$, taken $k$ a time ($k^{th}$ elementary symmetric polynomial). Find $S_1 + S_2 + \cdots +S_n$.