Two circles, $O_1$ and $O_2$ are tangent. Let $AB$ be their common tangent line which touches $O_1$ at point $A$ and touches $O_2$ at point $B$. Extend $AO_1$ and intersects $O_1$ at another point $C$. Line $CD$ is tangent to circle $O_2$ at point $D$. Show that $AC=CD$.