AMC10/12
2016
Let $ABCD$ be a unit square. Let $Q_1$ be the midpoint of $\overline{CD}$. For $i=1,2,\dots,$ let $P_i$ be the intersection of $\overline{AQ_i}$ and $\overline{BD}$, and let $Q_{i+1}$ be the foot of the perpendicular from $P_i$ to $\overline{CD}$. What is \[\sum_{i=1}^{\infty} \text{Area of } \triangle DQ_i P_i \, ?\]