Home
Book
Learn
Library
Practice
Contact
Log In
CeilingAndFloor
AMC10/12
2016
Problem - 2930
Let $f(x)=\sum_{k=2}^{10}(\lfloor kx \rfloor -k \lfloor x \rfloor)$, where $\lfloor r \rfloor$ denotes the greatest integer less than or equal to $r$. How many distinct values does $f(x)$ assume for $x \ge 0$?
report an error