AIME
2010
Let $M \ge 3$ be an integer and let $S = \{3,4,5,\ldots,m\}$. Find the smallest value of $m$ such that for every partition of $S$ into two subsets, at least one of the subsets contains integers $a$, $b$, and $c$ (not necessarily distinct) such that $ab = c$.
Note: a partition of $S$ is a pair of sets $A$, $B$ such that $A \cap B = \emptyset$, $A \cup B = S$.